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Preface to First Edition

This is a book about modern cosmology. Because this is a big subject – as big as
the Universe – we have had to choose one particular theme upon which to focus
our treatment. Current research in cosmology ranges over fields as diverse as
quantum gravity, general relativity, particle physics, statistical mechanics, nonlin-
ear hydrodynamics and observational astronomy in all wavelength regions, from
radio to gamma rays. We could not possibly do justice to all these areas in one
volume, especially in a book such as this which is intended for advanced under-
graduates or beginning postgraduates. Because we both have a strong research
interest in theories for the origin and evolution of cosmic structure – galaxies,
clusters and the like – and, in many respects, this is indeed the central problem
in this field, we decided to concentrate on those elements of modern cosmology
that pertain to this topic. We shall touch on many of the areas mentioned above,
but only insofar as an understanding of them is necessary background for our
analysis of structure formation.
Cosmology in general, and the field of structure formation in particular, has

been a ‘hot’ research topic formany years. Recent spectacular observational break-
throughs, like the discovery by the COBE satellite in 1992 of fluctuations in the
temperature of the cosmic microwave background, have made newspaper head-
lines all around the world. Both observational and theoretical sides of the subject
continue to engross not only the best undergraduate and postgraduate students
and more senior professional scientists, but also the general public. Part of the
fascination is that cosmology lies at the crossroads of many disciplines. An intro-
duction to this subject therefore involves an initiation into many seemingly dis-
parate branches of physics and astrophysics; this alone makes it an ideal area in
which to encourage young scientists to work.
Nevertheless, cosmology is a peculiar science. The Universe is, by definition,

unique. We cannot prepare an ensemble of universes with slightly different param-
eter values and look for differences or correlations in their behaviour. In many
branches of physical science such experimentation often leads to the formulation
of empirical laws which give rise to models and subsequently theories. Cosmol-
ogy is different. We have only one Universe, and this must provide the empirical
laws we try to explain by theory, as well as the experimental evidence we use to
test the theories we have formulated. Though the distinction between them is, of
course, not completely sharp, it is fair to say that physics is predominantly char-
acterised by experiment and theory, and cosmology by observation and paradigm.
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(We take the word ‘paradigm’ to mean a theoretical framework, not all of whose
elements have been formalised in the sense of being directly related to obser-
vational phenomena.) Subtle influences of personal philosophy, cultural and, in
some cases, religious background lead to very different choices of paradigm in
many branches of science, but this tendency is particularly noticeable in cosmol-
ogy. For example, one’s choice to include or exclude the cosmological constant
term in Einstein’s field equations of general relativity can have very little empir-
ical motivation but must be made on the basis of philosophical, and perhaps
aesthetic, considerations. Perhaps a better example is the fact that the expansion
of the Universe could have been anticipated using Newtonian physics as early as
the 17th century. The Cosmological Principle, according to which the Universe is
homogeneous and isotropic on large scales, is sufficient to ensure that a Newto-
nian universe cannot be static, but must be either expanding or contracting. A
philosophical predisposition in western societies towards an unchanging, regular
cosmos apparently prevented scientists from drawing this conclusion until it was
forced upon them by 20th century observations. Incidentally, a notable excep-
tion to this prevailing paradigm was the writer Edgar Allan Poe, who expounded
a picture of a dynamic, cyclical cosmos in his celebrated prose poem Eureka. We
make these points to persuade the reader that cosmology requires not only a
good knowledge of interdisciplinary physics, but also an open mind and a certain
amount of self-knowledge.
One can learn much about what cosmology actually means from its history.

Since prehistoric times, man has sought to make sense of his existence and that
of the world around him in some kind of theoretical framework. The first such
theories, not recognisable as ‘science’ in the modern sense of the word, were
mythological. In western cultures, the Ptolemaic cosmology was a step towards
the modern approach, but was clearly informed by Greek cultural values. The
Copernican Principle, the notion that we do not inhabit a special place in the Uni-
verse and a kind of forerunner of the Cosmological Principle, was to some extent
a product of the philosophical and religious changes taking place in Renaissance
times. The mechanistic view of the Universe initiated by Newton and championed
by Descartes, in which one views the natural world as a kind of clockwork device,
was influenced not only by the beginnings of mathematical physics but also by
the first stirrings of technological development. In the era of the Industrial Revo-
lution, man’s perception of the natural world was framed in terms of heat engines
and thermodynamics, and involved such concepts as the ‘Heat Death of the Uni-
verse’.
With hindsight we can say that cosmology did not really come of age as a science

until the 20th century. In 1915 Einstein advanced his theory of general relativity.
His field equations told him the Universe should be evolving; Einstein thought he
must have made a mistake and promptly modified the equations to give a static
cosmological solution, thus perpetuating the fallacy we discussed. It was not until
1929 that Hubble convinced the astronomical community that the Universe was
actually expanding after all. (To put this affair into historical perspective, remem-
ber that it was only in the mid-1920s that it was demonstrated – by Hubble and
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others – that faint nebulae, now known to be galaxies like our own Milky Way,
were actually outside our Galaxy.) The next few decades saw considerable theo-
retical and observational developments. The Big Bang and steady-state cosmolo-
gies were proposed and their respective advocates began a long and acrimonious
debate about which was correct, the legacy of which lingers still. For many work-
ers this debate was resolved by the discovery in 1965 of the cosmic microwave
background radiation, which was immediately seen to be good evidence in favour
of an evolving Universe which was hotter and denser in the past. It is reason-
able to regard this discovery as marking the beginning of ‘Physical Cosmology’.
Counts of distant galaxies were also showing evidence of evolution in the prop-
erties of these objects at this time, and the first calculations had already been
made, notably by Alpher and Herman in the late 1940s, of the elemental abun-
dances expected to be produced by nuclear reactions in the early stages of the Big
Bang. These, and other, considerations left the Big Bang model as the clear victor
over the steady-state picture.
By the 1970s, attention was being turned to the question that forms the main

focus of this book: where did the structure we observe in the Universe around us
actually come from? The fact that the microwave background appeared remark-
ably uniform in temperature across the sky was taken as evidence that the early
Universe (when it was less than a few hundred thousand years old) was very
smooth. But the Universe now is clearly very clumpy, with large fluctuations in
its density from place to place. How could these two observations be reconciled?
A ‘standard’ picture soon emerged, based on the known physics of gravitational
instability. Gravity is an attractive force, so that a region of the Universe which
is slightly denser than average will gradually accrete material from its surround-
ings. In so doing the original, slightly denser region gets denser still and therefore
accretes even more material. Eventually this region becomes a strongly bound
‘lump’ of matter surrounded by a region of comparatively low density. After two
decades, gravitational instability continues to form the basis of the standard the-
ory for structure formation. The details of how it operates to produce structures
of the form we actually observe today are, however, still far from completely
understood.
To resume our historical thread, the 1970s saw the emergence of two com-

peting scenarios (a terrible word, but sadly commonplace in the cosmological
literature) for structure formation. Roughly speaking, one of these was a ‘bottom-
up’, or hierarchical, model, in which structure formation was thought to begin
with the collapse of small objects which then progressively clustered together
and merged under the action of their mutual gravitational attraction to form
larger objects. This model, called the isothermal model, was advocated mainly
by American researchers. On the other hand, many Soviet astrophysicists of the
time, led by Yakov B. Zel’dovich, favoured a model, the adiabatic model, in which
the first structures to condense out of the expanding plasma were huge agglom-
erations of mass on the scale of giant superclusters of galaxies; smaller struc-
tures like individual galaxies were assumed to be formed by fragmentation pro-
cesses within the larger structures, which are usually called ‘pancakes’. The debate
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between the isothermal and adiabatic schools never reached the level of animos-
ity of the Big Bang versus steady-state controversy but was nevertheless healthily
animated.
By the 1980s it was realised that neither of these models could be correct.

The reasons for this conclusion are not important at this stage; we shall dis-
cuss them in detail during Part 3 of the book. Soon, however, alternative models
were proposed which avoided many of the problems which led to the rejection
of the 1970s models. The new ingredient added in the 1980s was non-baryonic
matter; in other words, matter in the form of some exotic type of particle other
than protons and neutrons. This matter is not directly observable because it is
not luminous, but it does feel the action of gravity and can thus assist the gravi-
tational instability process. Non-baryonic matter was thought to be one of two
possible types: hot or cold. As had happened in the 1970s, the cosmological
world again split into two camps, one favouring cold dark matter (CDM) and the
other hot dark matter (HDM). Indeed, there are considerable similarities between
the two schisms of the 1970s and 1980s, for the CDM model is a ‘bottom-up’
model like the old baryon isothermal picture, while the HDM model is a ‘top-
down’ scenario like the adiabatic model. Even the geographical division was the
same; Zel’dovich’s great Soviet school were the most powerful advocates of the
HDM picture.
The 1980s also saw another important theoretical development: the idea that

the Universe may have undergone a period of inflation, during which its expan-
sion rate accelerated and any initial inhomogeneities were smoothed out. Inflation
provides a model which can, at least in principle, explain how such homogeneity
might have arisen and which does not require the introduction of the Cosmolog-
ical Principle ab initio. While creating an observable patch of the Universe which
is predominantly smooth and isotropic, inflation also guarantees the existence
of small fluctuations in the cosmological density which may be the initial per-
turbations needed to feed the gravitational instability thought to be the origin of
galaxies and other structures.
The history of cosmology in the 20th century is marked by an interesting inter-

play of opposites. For example, in the development of structure-formation the-
ories one can see a strong tendency towards change (such as from baryonic to
non-baryonic models), but also a strong element of continuity (the persistence
of the hierarchical and pancake scenarios). The standard cosmological models
have an expansion rate which is decelerating because of the attractive nature
of gravity. In models involving inflation (or those with a cosmological constant)
the expansion is accelerated by virtue of the fact that gravity effectively becomes
repulsive for some period. The Cosmological Principle asserts a kind of large-scale
order, while inflation allows this to be achieved locally within a Universe charac-
terised by large-scale disorder. The confrontation between steady-state and Big
Bang models highlights the distinction between stationarity and evolution. Some
variants of the Big Bang model involving inflation do, however, involve a large
‘metauniverse’ within which ‘miniuniverses’ of the size of our observable patch
are continually being formed. The appearance of miniuniverses also emphasises
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the contrast between whole and part : is our observable Universe all there is, or
even representative of all there is? Or is it just an atypical ‘bubble’ which just
happens to have the properties required for life to evolve within it? This brings
into play the idea of an Anthropic Cosmological Principle which emphasises the
special nature of the conditions necessary to create observers, compared with
the general homogeneity implied by the Cosmological Principle in its traditional
form.
Another interesting characteristic of cosmology is the distinction, which is often

blurred, between what one might call cosmology and metacosmology. We take
cosmology to mean the scientific study of the cosmos as a whole, an essential
part of which is the testing of theoretical constructions against observations, as
described above. On the other hand, metacosmology is a term which describes
elements of a theoretical construction, or paradigm, which are not amenable to
observational test. As the subject has developed, various aspects of cosmology
have moved from the realm of metacosmology into that of cosmology proper.
The cosmic microwave background, whose existence was postulated as early as
the 1940s, but which was not observable by means of technology available at
that time, became part of cosmology proper in 1965. It has been argued by some
that the inflationary metacosmology has now become part of scientific cosmology
because of the COBE discovery of fluctuations in the temperature of themicrowave
background across the sky. We think this claim is premature, although things are
clearly moving in the right direction for this to take place some time in the future.
Some metacosmological ideas may, however, remain so forever, either because of
the technical difficulty of observing their consequences or because they are not
testable even in principle. An example of the latter difficulty may be furnished by
Linde’s chaotic inflationary picture of eternally creating miniuniverses which lie
beyond the radius of our observable Universe.
Despite these complexities and idiosyncrasies, modern cosmology presents us

with clear challenges. On the purely theoretical side, we require a full integration
of particle physics into the Big Bang model, and a theory which treats gravita-
tional physics at the quantum level. We also need a theoretical understanding of
various phenomena which are probably based on well-established physical pro-
cesses: nonlinearity in gravitational clustering, hydrodynamical processes, stellar
formation and evolution, chemical evolution of galaxies. Many observational tar-
gets have also been set: the detection of candidate dark-matter particles in the
galactic halo; gravitational waves; more detailed observations of the temperature
fluctuations in the cosmic microwave background; larger samples of galaxy red-
shifts and peculiar motions; elucidation of the evolutionary properties of galaxies
with cosmic time. Above all, we want to stress that cosmology is a field in which
many fundamental questions remain unanswered and where there is plenty of
scope for new ideas. The next decade promises to be at least as exciting as the
last, with ongoing experiments already probing themicrowave background in finer
detail and powerful optical telescopes mapping the distribution of galaxies out to
greater and greater distances. Who can say what theoretical ideas will be advanced
in light of these new observations?Will the theoretical ideas described in this book
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turn out to be correct, or will we have to throw them all away and go back to the
drawing board?
This book is intended to be an up-to-date introduction to this fascinating yet

complex subject. It is intended to be accessible to advanced undergraduate and
beginning postgraduate students, but contains much material which will be of
interest to more established researchers in the field, and even non-specialists
should find it a useful introduction to many of the important ideas in modern
cosmology. Our book does not require a high level of specialisation on behalf
of the reader. Only a modest use is made of general relativity. We use some
concepts from statistical mechanics and particle physics, but our treatment of
them is as self-contained as possible. We cover the basic material, such as the
Friedmann models, one finds in all elementary cosmology texts, but we also take
the reader through more advanced material normally available only in technical
review articles or in the research literature. Although many cosmology books are
on the market at the moment thanks, no doubt, to the high level of public and
media interest in this subject, very few tackle the material we cover at this kind of
‘bridging’ level between elementary textbook and research monograph. We have
also covered some material which one might regard as slightly old-fashioned. Our
treatment of the adiabatic baryon picture of structure formation in Chapter 12 is
an example. We have included such material primarily for pedagogical reasons,
but also for the valuable historical lessons it provides. The fact that models come
and go so rapidly in this field is explained partly by the vigorous interplay between
observation and theory and partly by virtue of the fact that cosmology, in com-
mon with other aspects of life, is sometimes a victim of changes in fashion. We
have also included more recent theory and observation alongside this pedagogi-
cal material in order to provide the reader with a firm basis for an understanding
of future developments in this field. Obviously, because ours is such an exciting
field, with advances being made at a rapid rate, we cannot claim to be definitive
in all areas of contemporary interest. At the end of each chapter we give lists of
references – which are not intended to be exhaustive but which should provide
further reading on the fundamental issues – as well as more detailed technical
articles for the advanced student. We have not cited articles in the body of each
chapter, mainly to avoid interrupting the flow of the presentation. By doing this,
it is certainly not our intention to claim that we have not leaned upon other works
for much of this material; we implicitly acknowledge this for any work we list in
the references. We believe that our presentation of this material is the most com-
prehensive and accessible available at this level amongst the published works
belonging to the literature of this subject; a list of relevant general books on cos-
mology is given after this preface.
The book is organised into four parts. The first, Chapters 1–4, covers the basics

of general relativity, the simplest cosmological models, alternative theories and
introductory observational cosmology. This part can be skipped by students who
have already taken introductory courses in cosmology. Part 2, Chapters 5–9, deals
with physical cosmology and the thermal history of the universe in Big Bang
models, including a discussion of phase transitions and inflation. Part 3, Chap-
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ters 10–15, contains a detailed treatment of the theory of gravitational instability
in both the linear and nonlinear regimes with comments on dark-matter theories
and hydrodynamical effects in the context of galaxy formation. The final part,
Chapters 16–19, deals with methods for testing theories of structure formation
using statistical properties of galaxy clustering, the fluctuations of the cosmic
microwave background, galaxy-peculiar motions and observations of galaxy evo-
lution and the extragalactic radiation backgrounds. The last part of the book is at
a rather higher level than the preceding ones and is intended to be closer to the
ongoing research in this field.
Some of the text is based upon an English adaptation of Introduzione alla Cos-

mologia (Zanichelli, Bologna, 1990), a cosmology textbook written in Italian by
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We decided to keep our account of the basic physics of perturbation growth
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mary of model-building in Chapter 15 for readers wishing to bypass the details.
Other bits, such as those covering theories with variable constants and inhomo-

geneous cosmologies, were added for no better reason than that they are fun. On
the other hand, we missed the boat in a significant way by minimising the role of
the cosmological constant in the first edition. Who knows, maybe we will strike it
lucky with one of these additions!
Because of the dominance that observation has assumed over the last few years,

we decided to add a chapter at the end of the book exploring some of the planned
developments in observation technology (gravitational wave detectors, new satel-
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We are grateful to everyone who helped us with this second edition and to
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alphabetical order) George Ellis, Richard Ellis, Carlos Frenk, Andrew Liddle, Sabino
Matarrese, Lauro Moscardini and Bepi Tormen for their comments and advice. We
also acknowledge the help of many students who helped us correct some of the
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Peter Coles and Francesco Lucchin
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Cosmological Models





1

First Principles

In this chapter, our aim is to provide an introduction to the basic mathematical
structure of modern cosmological models based on Einstein’s theory of gravity,
the General Theory of Relativity or general relativity for short. This theory is math-
ematically challenging, but fortunately we do not really need to use its fully gen-
eral form. Throughout this chapter we will therefore illustrate the key results with
Newtonian analogies. We begin our study with a discussion of the Cosmological
Principle, the ingredient that makes relativistic cosmology rather more palatable
than it might otherwise be.

1.1 The Cosmological Principle

Whenever science enters a new field and is faced with a dearth of observational
or experimental data some guiding principle is usually needed to assist during
the first tentative steps towards a theoretical understanding. Such principles are
often based on ideas of symmetry which reduce the number of degrees of freedom
one has to consider. This general rule proved to be the case in the early years of
the 20th century when the first steps were taken, by Einstein and others, towards
a scientific theory of the Universe. Little was then known empirically about the
distribution of matter in the Universe and Einstein’s theory of gravity was found
to be too difficult to solve for an arbitrary distribution of matter. In order to
make progress the early cosmologists therefore had to content themselves with
the construction of simplified models which they hoped might describe some
aspects of the Universe in a broad-brush sense. These models were based on
an idea called the Cosmological Principle. Although the name ‘principle’ sounds
grand, principles are generally introduced into physics when one has no data to
go on, and cosmology was no exception to this rule.
The Cosmological Principle is the assertion that, on sufficiently large scales

(beyond those traced by the large-scale structure of the distribution of galaxies),
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the Universe is both homogeneous and isotropic. Homogeneity is the property
of being identical everywhere in space, while isotropy is the property of looking
the same in every direction. The Universe is clearly not exactly homogeneous,
so cosmologists define homogeneity in an average sense: the Universe is taken
to be identical in different places when one looks at sufficiently large pieces. A
good analogy is that of a patterned carpet which is made of repeating units of
some basic design. On the scale of the individual design the structure is clearly
inhomogeneous but on scales larger than each unit it is homogeneous.
There is quite good observational evidence that the Universe does have these

properties, although this evidence is not completely watertight. One piece of evi-
dence is the observed near-isotropy of the cosmic microwave background radi-
ation. Isotropy, however, does not necessarily imply homogeneity without the
additional assumption that the observer is not in a special place: the so-called
Copernican Principle. One would observe isotropy in any spherically symmetric
distribution of matter, but only if one were in the middle of the pattern. A cir-
cular carpet bearing a design consisting of a series of concentric rings would
look isotropic only to an observer standing in the centre of the pattern. Observed
isotropy, together with the Copernican Principle, therefore implies the Cosmolog-
ical Principle.
The Cosmological Principle was introduced by Einstein and subsequent rela-

tivistic cosmologists without any observational justification whatsoever. Indeed,
it was not known until the 1920s that the spiral nebulae (now known to be galax-
ies like our own) were outside our own galaxy, the Milky Way. A term frequently
used to describe the entire Universe in those days was metagalaxy, indicating that
it was thought that the Milky Way was essentially the entire cosmos. The Galaxy
certainly does not look the same in all directions: it presents itself as a prominent
band across the night sky.
In advocating the Cosmological Principle, Einstein was particularly motivated

by ideas associated with Ernst Mach. Mach’s Principle, roughly speaking, is that
the laws of physics are determined by the distribution of matter on large scales.
For example, the value of the gravitational constant G was thought perhaps to
be related to the amount of mass in the Universe. Einstein thought that the
only way to put theoretical cosmology on a firm footing was to assume that
there was a basic simplicity to the global structure of the Universe enabling a
similar simplicity in the local behaviour of matter. The Cosmological Principle
achieves this and leads to relatively simple cosmological models, as we shall see
shortly.
There are various approaches one can take to this principle. One is philosoph-

ical, and is characterised by the work of Milne in the 1930s and later by Bondi,
Gold and Hoyle in the 1940s. This line of reasoning is based, to a large extent, on
the aesthetic appeal of the Cosmological Principle. Ultimately this appeal stems
from the fact that it would indeed be very difficult for us to understand the Uni-
verse if physical conditions, or even the laws of physics themselves, were to vary
dramatically from place to place. These thoughts have been taken further, leading
to the Perfect Cosmological Principle, in which the Universe is the same not only
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in all places and in all directions, but also at all times. This stronger version of
the Cosmological Principle was formulated by Bondi and Gold (1948) and it sub-
sequently led Hoyle (1948) and Hoyle and Narlikar (1963, 1964) to develop the
steady-state cosmology. This theory implies, amongst other things, the continu-
ous creation of matter to keep the density of the expanding Universe constant.
The steady-state universe was abandoned in the 1960s because of the proper-
ties of the cosmic microwave background, radio sources and the cosmological
helium abundance which are more readily explained in a Big Bang model than in
a steady state. Nowadays the latter is only of historical interest (see Chapter 3
later).
Attempts have also been made to justify the Cosmological Principle on more

direct physical grounds. As we shall see, homogeneous and isotropic universes
described by the theory of general relativity possess what is known as a ‘cosmo-
logical horizon’: regions sufficiently distant from each other cannot have been
in causal contact (‘have never been inside each other’s horizon’) at any stage
since the Big Bang. The size of the regions whose parts are in causal contact
with each other at a given time grows with cosmological epoch; the calculation
of the horizon scale is performed in Section 2.7. The problem then arises as to
how one explains the observation that the Universe appears homogeneous on
scales much larger than the scale one expects to have been in causal contact
up to the present time. The mystery is this: if two regions of the Universe have
never been able to communicate with each other by means of light signals, how
can they even know the physical conditions (density, temperature, etc.) pertain-
ing to each other? If they cannot know this, how is it that they evolve in such
a way that these conditions are the same in each of the regions? One either
has to suppose that causal physics is not responsible for this homogeneity, or
that the calculation of the horizon is not correct. This conundrum is usually
called the Cosmological Horizon Problem and we shall discuss it in some detail in
Chapter 7.
Various attempts have been made to avoid this problem. For example, particu-

lar models of the Universe, such as some that are homogeneous but not isotropic,
do not possess the required particle horizon. These models can become isotropic
in the course of their evolution. A famous example is the ‘mix-master’ universe of
Misner (1968) in which isotropisation is effected by viscous dissipation involving
neutrinos in the early universe. Another way to isotropise an initially anisotropic
universe is by creating particles at the earliest stage of all, the Planck era (Chap-
ter 6). More recently still, Guth (1981) proposed an idea which could resolve the
horizon problem: the inflationary universe, which is of great contemporary inter-
est in cosmology, and which we discuss in Chapter 7.
In any case, the most appropriate approach to this problem is an empirical

one. We accept the Cosmological Principle because it agrees with observations.
We shall describe the observational evidence for this in Chapter 4; data concern-
ing radiogalaxies, clusters of galaxies, quasars and the microwave background all
demonstrate that the level of anisotropy of the Universe on large scales is about
one part in 105.
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1.2 Fundamentals of General Relativity

The strongest force of nature on large scales is gravity, so the most important part
of a physical description of the Universe is a theory of gravity. The best candidate
we have for this is Einstein’s General Theory of Relativity. We therefore begin this
chapter with a brief introduction to the basics of this theory. Readers familiar with
this material can skip Section 1.2 and resume reading at Section 1.3. In fact, about
90% of this book does not require the use of general relativity at all so readers
only interested in a Newtonian treatment may turn directly to Section 1.11.
In Special Relativity, the invariant interval between two events at coordinates

(t, x,y, z) and (t + dt, x + dx,y + dy,z + dz) is defined by

ds2 = c2 dt2 − (dx2 + dy2 + dz2), (1.2.1)

where ds is invariant under a change of coordinate system and the path of a
light ray is given by ds = 0. The paths of material particles between any two
events are such as to give stationary values of

∫
path ds; this corresponds to the

shortest distance between any two points being a straight line. This all applies to
the motion of particles under no external forces; actual forces such as gravitation
and electromagnetism cause particle tracks to deviate from the straight line.
Gravitation exerts the same force per unit mass on all bodies and the essence of

Einstein’s theory is to transform it from being a force to being a property of space–
time. In his theory, the space–time is not necessarily flat as it is in Minkowski
space–time (1.2.1) but may be curved. The interval between two events can be
written as

ds2 = gij dxi dxj, (1.2.2)

where repeated suffixes imply summation and i, j both run from 0 to 3; x0 = ct
is the time coordinate and x1, x2, x3 are space coordinates. The tensor gij is the
metric tensor describing the space–time geometry; we discuss this in much more
detail in Section 1.3. As we mentioned above, particle moves in such a way that
the integral along its path is stationary:

δ
∫
path

ds = 0, (1.2.3)

but such tracks are no longer straight because of the effects of gravitation con-
tained in gij . From Equation (1.2.3), the path of a free particle, which is called a
geodesic, can be shown to be described by

d2xi

ds2
+ Γ ikl

dxk

ds
dxl

ds
= 0, (1.2.4)

where the Γ s are called Christoffel symbols,

Γ ikl = 1
2g
im
[
∂gmk
∂xl

+ ∂gml
∂xk

− ∂gkl
∂xm

]
, (1.2.5)
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and

gimgmk = δik (1.2.6)

is the Kronecker delta, which is unity when i = k and zero otherwise. Free particles
move on geodesics but the metric gij is itself determined by the matter. The
key factor in Einstein’s equations is the relationship between the distribution of
matter and the metric describing the space–time geometry.
In general relativity all equations are tensor equations. A general tensor is a

quantity which transforms as follows when coordinates are changed from xi to
x′i:

A′kl...
pq... =

∂x′k

∂xm
∂x′l

∂xn
· · · ∂x

r

∂x′p
∂xs

∂x′q · · ·Amn...rs... , (1.2.7)

where the upper indices are contravariant and the lower are covariant. The dif-
ference between these types of index can be illustrated by considering a tensor of
rank 1 which is simply a vector (the rank of a tensor is the number of indices it
carries). A vector will undergo a transformation according to some rules when the
coordinate system in which it is expressed is changed. Suppose we have an origi-
nal coordinate system xi and we transform it to a new system x′k. If the vector A
transforms in such a way that A′ = ∂x′k/∂xiA, then the vector A is a contravari-
ant vector and it is written with an upper index, i.e. A = Ai. On the other hand,
if the vector transforms according to A′ = ∂xi/∂x′kA, then it is covariant and is
written A = Ai. The tangent vector to a curve is an example of a contravariant
vector; the normal to a surface is a covariant vector. The rule (1.2.7) is a gener-
alisation of these concepts to tensors of arbitrary rank and to tensors of mixed
character.
In Newtonian and special-relativistic physics a key role is played by conservation

laws of mass, energy and momentum. Our task is now to obtain similar laws
for general relativity. With the equivalence of mass and energy brought about by
Special Relativity, these laws can be written

∂Tik
∂xk

= 0. (1.2.8)

The energy–momentum tensor Tik describes the matter distribution: for a perfect
fluid, with pressure p and energy density ρ, it is

Tik = (p + ρc2)UiUk − pgik; (1.2.9)

the vector Ui is the fluid four-velocity

Ui = gikUk = gikdx
k

ds
, (1.2.10)

where xk(s) is the world line of a fluid element, i.e. the trajectory in space–time
followed by the particle. Equation (1.2.10) is a special case of the general rule for
raising or lowering suffixes using the metric tensor.
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It is easy to see that the Equation (1.2.8) cannot be correct in general relativity
since ∂T ik/∂xk and ∂Tik/∂xk are not tensors. Since

T ′
mn = ∂xi

∂x′m
∂xk

∂x′nTik,

it is evident that ∂Tmn/∂x′n involves terms such as ∂2xi/∂x′m∂x′n, so it will not
be a tensor. However, although the ordinary derivative of a tensor is not a tensor,
a quantity called the covariant derivative can be shown to be one. The covariant
derivative of a tensor A is defined by

Akl...pq...;j =
∂Akl...pq...

∂xj
+ Γ kmjAml...pq... + Γ lnjAkn...pq... + · · · − Γ rpjAkl...rq... − Γ sqjAkl...ps... − · · · (1.2.11)

in an obvious notation. The conservation law can therefore be written in a fully
covariant form:

T ki ;k = 0. (1.2.12)

A covariant derivative is usually written as a ‘;’ in the subscript; ordinary deriva-
tives are usually written as a ‘,’ so that Equation (1.2.8) can be written Tik,k = 0.
Einstein wished to find a relation betweenmatter andmetric and to equate Tik to

a tensor obtained from gik, which contains only the first two derivatives of gik and
has zero covariant derivative. Because, in the appropriate limit, Equation (1.2.12)
must reduce to Poisson’s equation describing Newtonian gravity

∇2ϕ = 4πGρ, (1.2.13)

it should be linear in the second derivative of the metric. The properties of curved
spaces were well-known when Einstein was working on this theory. For example,
it was known that the Riemann–Christoffel tensor,

Riklm = ∂Γ
i
km
∂xl

− ∂Γ
i
kl

∂xm
+ Γ inlΓ nkm − Γ inmΓ nkl, (1.2.14)

could be used to determine whether a given space is curved or flat. (Incidentally,
Γ ikm is not a tensor so it is by no means obvious, though it is actually true, that

Riklm is a tensor.) From the Riemann–Christoffel tensor one can form the Ricci
tensor :

Rik = Rlilk. (1.2.15)

Finally, one can form a scalar curvature, the Ricci scalar :

R = gikRik. (1.2.16)

Now we are in a position to define the Einstein tensor

Gik ≡ Rik − 1
2gikR. (1.2.17)
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Einstein showed that

G k
i ;k = 0. (1.2.18)

The tensor Gik contains second derivatives of gik, so Einstein proposed as his
fundamental equation

Gik ≡ Rik − 1
2gikR = 8πG

c4
Tik, (1.2.19)

where the quantity 8πG/c4 (G is Newton’s gravitational constant) ensures that
Poisson’s equation in its standard form (1.2.13) results in the limit of a weak
gravitational field. He subsequently proposed the alternative form

Gik ≡ Rik − 1
2gikR −Λgik = 8πG

c4
Tik, (1.2.20)

where Λ is called the cosmological constant ; as g ki ;k = 0, we still have T ki ;k = 0.
He actually did this in order to ensure that static cosmological solutions could be
obtained. We shall return to be the issue of Λ later, in Section 1.12.

1.3 The Robertson–Walker Metric

Having established the idea of the Cosmological Principle, our task is to see if
we can construct models of the Universe in which this principle holds. Because
general relativity is a geometrical theory, we must begin by investigating the geo-
metrical properties of homogeneous and isotropic spaces. Let us suppose we can
regard the Universe as a continuous fluid and assign to each fluid element the
three spatial coordinates xα (α = 1,2,3). Thus, any point in space–time can be
labelled by the coordinates xα, corresponding to the fluid element which is pass-
ing through the point, and a time parameter which we take to be the proper time t
measured by a clock moving with the fluid element. The coordinates xα are called
comoving coordinates. The geometrical properties of space–time are described by
ametric; themeaning of themetric will be divulged just a little later. One can show
from simple geometrical considerations only (i.e. without making use of any field
equations) that the most general space–timemetric describing a universe in which
the Cosmological Principle is obeyed is of the form

ds2 = (c dt)2 − a(t)2
[

dr 2

1−Kr 2 + r 2(dϑ2 + sin2 ϑdϕ2)
]
, (1.3.1)

where we have used spherical polar coordinates: r , ϑ and ϕ are the comoving
coordinates (r is by convention dimensionless); t is the proper time; a(t) is a
function to be determined which has the dimensions of a length and is called the
cosmic scale factor or the expansion parameter ; the curvature parameter K is a
constant which can be scaled in such a way that it takes only the values 1, 0 or
−1. The metric (1.3.1) is called the Robertson–Walker metric.
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The significance of the metric of a space–time, or more specifically the metric
tensor gik, which we introduced briefly in Equation (1.2.2),

ds2 = gik(x)dxi dxk (i, k = 0,1,2,3) (1.3.2)

(as usual, repeated indices imply a summation), is such that, in Equation (1.3.2),
ds2 represents the space–time interval between two points labelled by xj and
xj+dxj . Equation (1.3.1) merely represents a special case of this type of relation.
The metric tensor determines all the geometrical properties of the space–time
described by the system of coordinates xj . It may help to think of Equation (1.3.2)
as a generalisation of Pythagoras’s theorem. If ds2 > 0, then the interval is timelike
and ds/c would be the time interval measured by a clock which moves freely
between xj and xj + dxj . If ds2 < 0, then the interval is spacelike and |ds2|1/2
represents the length of a ruler with ends at xj and xj + dxj measured by an
observer at rest with respect to the ruler. If ds2 = 0, then the interval is lightlike
or null ; this type of interval is important because it means that the two points xj

and xj + dxj can be connected by a light ray.
If the distribution of matter is uniform, then the space is uniform and isotropic.

This, in turn, means that one can define a universal time (or proper time) such that
at any instant the three-dimensional spatial metric

dl2 = γαβ dxα dxβ (α,β = 1,2,3), (1.3.3)

where the interval is now just the spatial distance, is identical in all places and in
all directions. Thus, the space–time metric must be of the form

ds2 = (c dt)2 − dl2 = (c dt)2 − γαβ dxα dxβ. (1.3.4)

This coordinate system is called the synchronous gauge and is themost commonly
used way of slicing the four-dimensional space–time into three space dimensions
and one time dimension.
To find the three-dimensional (spatial) metric tensor γαβ let us consider first

the simpler case of an isotropic and homogeneous space of only two dimensions.
Such a space can be either (i) the usual Cartesian plane (flat Euclidean space with
infinite curvature radius), (ii) a spherical surface of radius R (a curved space with
positive Gaussian curvature 1/R2), or (iii) the surface of a hyperboloid (a curved
space with negative Gaussian curvature).
In the first case the metric, in polar coordinates ρ (0 � ρ <∞) and ϕ (0 � ϕ <

2π ), is of the form
dl2 = a2(dr 2 + r 2 dϕ2); (1.3.5a)

we have introduced the dimensionless coordinate r = ρ/a, which lies in the range
0 � r < ∞, and the arbitrary constant a, which has the dimensions of a length.
On the surface of a sphere of radius R the metric in coordinates ϑ (0 � ϑ � π )
and ϕ (0 �ϕ < 2π ) is just

dl2 = a2(dϑ2 + sin2 ϑdϕ2) = a2
(

dr 2

1− r 2 + r 2 dϕ2
)
, (1.3.5b)
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where a = R and the dimensionless variable r = sinϑ lies in the interval 0 � r � 1
(r = 0 at the poles and r = 1 at the equator). In the hyperboloidal case the metric
is given by

dl2 = a2(dϑ2 + sinh2 ϑdϕ2) = a2
(

dr 2

1+ r 2 + r 2 dϕ2
)
, (1.3.5 c)

where the dimensionless variable r = sinhϑ lies in the range 0 � r <∞.
The Robertson–Walker metric is obtained from (1.3.4), where the spatial part

is simply the three-dimensional generalisation of (1.3.5). One finds that for the
three-dimensional flat, positively curved and negatively curved spaces one has,
respectively,

dl2 = a2(dr 2 + r 2 dΩ2), (1.3.6a)

dl2 = a2(dχ2 + sin2 χ dΩ2) = a2
(

dr 2

1− r 2 + r 2 dΩ2
)
, (1.3.6b)

dl2 = a2(dχ2 + sinh2 χ dΩ2) = a2
(

dr 2

1+ r 2 + r 2 dΩ2
)
, (1.3.6 c)

where dΩ2 = dϑ2 + sin2 ϑdϕ2; 0 � χ � π in (1.3.6b) and 0 � χ < ∞ in (1.3.6 c).
The values of K = 1, 0, −1 in (1.3.1) correspond, respectively, to the hypersphere,
Euclidean space and space of constant negative curvature.
The geometrical properties of Euclidean space (K = 0) are well known. On the

other hand, the properties of the hypersphere (K = 1) are complex. This space is
closed, i.e. it has finite volume, but has no boundaries. This property is clear by
analogy with the two-dimensional case of a sphere: beginning from a coordinate
origin at the pole, the surface inside a radius rc(ϑ) = aϑ has an area S(ϑ) =
2πa2(1− cosϑ), which increases with rc and has a maximum value Smax = 4πa2

at ϑ = π . The perimeter of this region is L(ϑ) = 2πa sinϑ = 2πar , which is
maximum at the ‘equator’ (ϑ = 1

2π ), where it takes the value 2πa, and is zero at
the ‘antipole’ (ϑ = π ): the sphere is therefore a closed surface, with finite area and
no boundary. In the three-dimensional case the volume of the region contained
inside a radius

rc(χ) = aχ = a sin−1 r (1.3.7)

has volume

V(χ) = 2πa3(χ − 1
2 sin2χ), (1.3.8)

which increases and has a maximum value for χ = π ,

Vmax = 2π2a3, (1.3.9)

and area

S(χ) = 4πa2 sin2 χ, (1.3.10)
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Figure 1.1 Examples of curved spaces in two dimensions: in a space with negative cur-
vature (open), for example, the sum of the internal angles of a triangle is less than 180◦,
while for a positively curved space (closed) it is greater.

maximum at the ‘equator’ (χ = 1
2π ), where it takes the value 4πa

2, and is zero at
the ‘antipole’ (χ = π ). In such a space the value of S(χ) is more than in Euclidean
space, and the sum of the internal angles of a triangle is more than π . The prop-
erties of a space of constant negative curvature (K = −1) are more similar to
those of Euclidean space: the hyperbolic space is open, i.e. infinite. All the relevant
formulae for this space can be obtained from those describing the hypersphere
by replacing trigonometric functions by hyperbolic functions. One can show, for
example, that S(χ) is less than the Euclidean case, and the sum of the internal
angles of a triangle is less than π .
In cases with K ≠ 0, the parameter a, which appears in (1.3.1), is related to

the curvature of space. In fact, the Gaussian curvature is given by CG = K/a2;
as expected it is positive for the closed space and negative for the open space.
The Gaussian curvature radius RG = C−1/2

G = a/√K is, respectively, positive or
imaginary in these two cases. In cosmology one uses the term radius of curvature
to describe themodulus ofRG; with this conventiona always represents the radius
of spatial curvature. Of course, in a flat universe the parameter a does not have
any geometrical significance.
As we shall see later in this chapter, the Einstein equations of general relativ-

ity relate the geometrical properties of space–time with the energy–momentum
tensor describing the contents of the Universe. In particular, for a homogeneous
and isotropic perfect fluid with rest-mass energy density ρc2 and pressure p, the
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solutions of the Einstein equations are the Friedmann cosmological equations:

ä = −4
3πG

(
ρ + 3

p
c2

)
a, (1.3.11a)

ȧ2 +Kc2 = 8
3πGρa

2 (1.3.11b)

(the dot represents a derivative with respect to cosmological proper time t); the
time evolution of the expansion parameter a which appears in the Robertson–
Walker metric (1.3.1) can be derived from (1.3.11) if one has an equation of state
relating p to ρ. From Equation (1.3.11b) one can derive the curvature

K
a2

= 1
c2

(
ȧ
a

)2( ρ
ρc

− 1
)
, (1.3.12)

where

ρc = 3
8πG

(
ȧ
a

)2
(1.3.13)

is called the critical density. The space is closed (K = 1), flat (K = 0) or open
(K = −1) according to whether the density parameter

Ω(t) = ρ
ρc

(1.3.14)

is greater than, equal to, or less than unity.
It will sometimes be useful to change the time variable we use from proper time

to conformal time:

τ =
∫

dt
a(t)

; (1.3.15)

with such a time variable the Robertson–Walker metric becomes

ds2 = a(τ)2
[
(c dτ)2 −

(
dr 2

1−Kr 2 + r 2 dΩ2
)]
. (1.3.16)

1.4 The Hubble Law

The proper distance, dP, of a point P from another point P0, which we take to define
the origin of a set of polar coordinates r , ϑ and ϕ, is the distance measured by
a chain of rulers held by observers which connect P to P0 at time t. From the
Robertson–Walker metric (1.3.1) with dt = 0 this can be seen to be

dP =
∫ r
0

adr ′

(1−Kr ′2)1/2 = af(r), (1.4.1)

where the function f(r) is, respectively,

f(r) = sin−1 r (K = 1), (1.4.2a)
f(r) = r (K = 0), (1.4.2b)

f(r) = sinh−1 r (K = −1). (1.4.2 c)
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Of course this proper distance is of little operational significance because one can
never measure simultaneously all the distance elements separating P from P0. The
proper distance at time t is related to that at the present time t0 by

dP(t0) = a0f(r) = a0a dP(t), (1.4.3)

where a0 is the value of a(t) at t = t0. Instead of the comoving coordinate r one
could also define a radial comoving coordinate of P by the quantity

dc = a0f(r). (1.4.4)

In this case the relation between comoving coordinates and proper coordinates is
just

dc = a0a dP. (1.4.5)

The proper distance dP of a source may change with time because of the time-
dependence of the expansion parameter a. In this case a source at P has a radial
velocity with respect to the origin P0 given by

vr = ȧf (r) = ȧadP. (1.4.6)

Equation (1.4.6) is called the Hubble law and the quantity

H(t) = ȧ/a (1.4.7)

is called the Hubble constant or, more accurately, the Hubble parameter (because
it is not constant in time). As we shall see, the value of this parameter evaluated at
the present time for our Universe,H(t0) = H0, is not known to any great accuracy.
It is believed, however, to have a value around

H0 � 65 km s−1 Mpc−1. (1.4.8)

The unit ‘Mpc’ is defined later on in Section 4.1. It is conventional to take
account of the uncertainty in H0 by defining the dimensionless parameter h to
be H0/100 km s−1 Mpc−1 (see Section 4.2). The law (1.4.6) can, in fact, be derived
directly from the Cosmological Principle if v  c. Consider a triangle defined by
the three spatial points O, O′ and P. Let the velocity of P and O′ with respect to O
be, respectively, v(r) and v(d). The velocity of P with respect to O′ is

v′(r′) = v(r)− v(d). (1.4.9)

From the Cosmological Principle the functions v and v′ must be the same. There-
fore

v(r − d) = v′(r − d) = v(r)− v(d). (1.4.10)
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Equation (1.4.10) implies a linear relationship between v and r:

vα = H β
α xβ (α,β = 1,2,3). (1.4.11)

If we impose the condition that the velocity field is irrotational,

∇× v = 0, (1.4.12)

which comes from the condition of isotropy, one can deduce that thematrixH β
α is

symmetric and can therefore be diagonalised by an appropriate coordinate trans-
formation. From isotropy, the velocity field must therefore be of the form

vi = Hxi, (1.4.13)

where H is only a function of time. Equation (1.4.13) is simply the Hubble
law (1.4.6).
Another, simpler, way to derive Equation (1.4.6) is the following. The points O,

O′ and P are assumed to be sufficiently close to each other that relativistic space–
time curvature effects are negligible. If the universe evolves in a homogeneous
and isotropic manner, the triangle OO′P must always be similar to the original
triangle. This means that the length of all the sides must be multiplied by the
same factor a/a0. Consequently, the distance between any two points must also
be multiplied by the same factor. We therefore have

l = a
a0
l0, (1.4.14)

where l0 and l are the lengths of a line segment joining two points at times t0 and
t, respectively. From (1.4.14) we recover immediately the Hubble law (1.4.6).
One property of the Hubble law, which is implicit in the previous reasoning, is

that we can treat any spatial position as the origin of a coordinate system. In fact,
referring again to the triangle OO′P, we have

vP = vO′ + v′P = Hd + v′P = Hr (1.4.15)

and, therefore,

v′P = H(r − d) = Hr′, (1.4.16)

which again is just the Hubble law, this time expressed about the point O′.

1.5 Redshift

It is useful to introduce a new variable related to the expansion parameter awhich
is more directly observable. We call this variable the redshift z and we shall use
it extensively from now on in describing the evolution of the Universe because
many of the relevant formulae are very simple when expressed in terms of this
variable.
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We define the redshift of a luminous source, such as a distant galaxy, by the
quantity

z = λ0 − λe
λe

, (1.5.1)

where λ0 is the wavelength of radiation from the source observed at O (which
we take to be the origin of our coordinate system) at time t0 and emitted by the
source at some (earlier) time te; the source is moving with the expansion of the
universe and is at a comoving coordinate r . The wavelength of radiation emitted
by the source is λe. The radiation travels along a light ray (null geodesic) from the
source to the observer so that ds2 = 0 and, therefore,

∫ t0
te

c dt
a(t)

=
∫ r
0

dr
(1−Kr 2)1/2 = f(r). (1.5.2)

Light emitted from the source at t′e = te+δte reaches the observer at t′0 = t0+δt0.
Given that f(r) does not change, because r is a comoving coordinate and both
the source and the observer are moving with the cosmological expansion, we can
write ∫ t′0

t′

c dt
a(t)

= f(r). (1.5.3)

If δt and, therefore, δt0 are small, Equations (1.5.2) and (1.5.3) imply that

δt0
a0

= δt
a
. (1.5.4)

If, in particular, δt = 1/νe and δt0 = 1/ν0 (νe and ν0 are the frequencies of the
emitted and observed light, respectively), we will have

νea = ν0a0 (1.5.5)

or, equivalently,
a
λe

= a0
λ0
, (1.5.6)

from which

1+ z = a0
a
. (1.5.7)

A line of reasoning similar to the previous one can be made to recover the evolu-
tion of the velocity vp(t) of a test particle with respect to a comoving observer. At
time t+dt the particle has travelled a distance dl = vp(t)dt and thus finds itself
moving with respect to a new reference frame which, because of the expansion of
the universe, has an expansion velocity dv = (ȧ/a)dl. The velocity of the particle
with respect to the new comoving observer is therefore

vp(t + dt) = vp(t)− ȧa dl = vp(t)− ȧavp(t)dt, (1.5.8)
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which, integrated, gives

vp ∝ a−1. (1.5.9)

The results expressed by Equations (1.5.5) and (1.5.11) are a particular example of
the fact that, in a universe described by the Robertson–Walker metric, the momen-
tum q of a free particle (whether relativistic or not) evolves according to q ∝ a−1.
There is also a simply way to recover Equation (1.5.7), which does not require

any knowledge of the metric. Consider two nearby points P and P′, participating
in the expansion of the Universe. From the Hubble law we have

dvP′ = H dl = ȧ
a
dl, (1.5.10)

where dvP′ is the relative velocity of P′ with respect to P and dl is the (infinitesimal)
distance between P and P′. The point P′ sends a light signal at time t and frequency
ν which arrives at P with frequency ν′ at time t + dt = t + (dl/c). Since dl is
infinitesimal, as is dvP′ , we can apply the approximate formula describing the
Doppler effect :

ν′ − ν
ν

= dν
ν

� −dvP′
c

= − ȧ
a
dt = −da

a
. (1.5.11)

The Equation (1.5.11) integrates immediately to give (1.5.5) and therefore (1.5.7).

1.6 The Deceleration Parameter

The Hubble parameter H(t) measures the expansion rate at any particular time
t for any model obeying the Cosmological Principle. It does, however, vary with
time in a way that depends upon the contents of the Universe. One can express
this by expanding the cosmic scale factor for times t close to t0 in a power series:

a(t) = a0[1+H0(t − t0)− 1
2q0H

2
0(t − t0)2 + · · · ], (1.6.1)

where

q0 = − ä(t0)a0
ȧ(t0)2

(1.6.2)

is called the deceleration parameter ; the suffix ‘0’, as always, refers to the fact that
q0 = q(t0). Note that while the Hubble parameter has the dimensions of inverse
time, q is actually dimensionless.
Putting the redshift, defined by Equation (1.5.7), into Equation (1.6.1) we find

that

z = H0(t0 − t)+ (1+ 1
2q0)H

2
0(t0 − t)2 + · · · , (1.6.3)

which can be inverted to yield

t0 − t = 1
H0
[z − (1+ 1

2q0)z
2 + · · · ]. (1.6.4)
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To find r as a function of z one needs to recall that, for a light ray,

∫ t0
t

c dt
a

=
∫ r
0

dr
(1−Kr 2)1/2 , (1.6.5)

which becomes, using Equations (1.5.7) and (1.6.3),

c
a0

∫ t0
t
[1+H0(t0 − t)+ (1+ 1

2q0)H
2
0(t0 − t)2 + · · · ]dt = r +O(r 3), (1.6.6)

and therefore

r = c
a0
[(t0 − t)+ 1

2H0(t0 − t)2 + · · · ]. (1.6.7)

Substituting Equation (1.6.4) into (1.6.7) we have, finally,

r = c
a0H0

[z − 1
2(1+ q0)z2 + · · · ]. (1.6.8)

Expressions of this type are useful because they do not require full solutions of
the Einstein equations for a(t); the quantity q0 is used to parametrise a family of
approximate solutions for t close to t0.

1.7 Cosmological Distances

We have shown how the comoving coordinate system we have adopted relates
to proper distance (i.e. distances measured in a hypersurface of constant proper
time) in spaces described by the Robertson–Walker metric. Obviously, however,
we cannot measure proper distances to astronomical objects in any direct way.
Distant objects are observed only through the light they emit which takes a finite
time to travel to us; we cannot therefore make measurements along a surface of
constant proper time, but only along the set of light paths travelling to us from
the past – our past light cone. One can, however, define operationally other kinds
of distance which are, at least in principle, directly measurable.
One such distance is the luminosity distance dL. This is defined in such a way

as to preserve the Euclidean inverse-square law for the diminution of light with
distance from a point source. Let L denote the power emitted by a source at a
point P, which is at a coordinate distance r at time t. Let l be the power received
per unit area (i.e. the flux) at time t0 by an observer placed at P0. We then define

dL =
(
L

4πl

)1/2
. (1.7.1)

The area of a spherical surface centred on P and passing through P0 at time t0
is just 4πa20r 2. The photons emitted by the source arrive at this surface having
been redshifted by the expansion of the universe by a factor a/a0. Also, as we
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have seen, photons emitted by the source in a small interval δt arrive at P0 in an
interval δt0 = (a0/a)δt due to a time-dilation effect. We therefore find

l = L
4πa20r 2

(
a
a0

)2
, (1.7.2)

from which

dL = a20
r
a
. (1.7.3)

Following the same procedure as in Section 1.6, one can show that

dL = c
H0
[z + 1

2(1− q0)z2 + · · · ], (1.7.4)

in contrast with the proper distance, dP, defined by Equation (1.4.1), which has
the form dP = a0r , with f(r) given by Equations (1.4.2).
Next we define the angular-diameter distance dA. Again, this is constructed in

such a way as to preserve a geometrical property of Euclidean space, namely the
variation of the angular size of an object with its distance from an observer. Let
DP(t) be the (proper) diameter of a source placed at coordinate r at time t. If the
angle subtended by DP is denoted ∆ϑ, then Equation (1.2.1) implies

DP = ar∆ϑ. (1.7.5)

We define dA to be the distance

dA = DP

∆ϑ
= ar ; (1.7.6)

it should be noted that a decreases as r increases for the same DP and, in some
models, the angular size of a source can actually increase with its luminosity
distance.
Other measures of distance, less often used, are the parallax distance

dµ = a0 r
(1−Kr 2)1/2 , (1.7.7)

and the proper motion distance

dM = a0r . (1.7.8)

Evidently, for r → 0, and therefore for t → t0, we have

dp � dL � dA � dµ � dM � dc, (1.7.9)

so that at small distances we recover the Euclidean behaviour.
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1.8 Them–z and N–z Relations
The general relationship we have established between redshift and distance allows
us to establish some interesting properties of the Universe which could, in princi-
ple, be used to probe its spatial geometry and, in particular, to test the Cosmolog-
ical Principle. In fact, there are severe complications with the implementation of
this idea, as we discuss in Section 4.7. If celestial objects (such as galaxy clusters,
galaxies, radio sources, quasars, etc.) are distributed homogeneously and isotrop-
ically on large scales, it is interesting to consider two relationships: them–z rela-
tionship between the apparent magnitude of a source and its redshift and the
N(> l)–z relationship between the number of sources of a given type with appar-
ent luminosity greater than some limit l and redshift less than z. These relations
are also important because, in principle, they provide a way of determining the
deceleration parameter q0.
As we have seen previously,

dL = c
H0
[z + 1

2(1− q0)z2 + · · · ], (1.8.1)

from which

l = L
4πd2L

= LH2
0

4πc2z2
[1+ (q0 − 1)z + · · · ]. (1.8.2)

Astronomers do not usually work with the absolute luminosity L and apparent
flux l. Instead theyworkwith quantities related to these: the absolutemagnitudeM
and the apparent magnitudem (for more details see Section 4.1). The magnitude
scale is defined logarithmically by taking a factor of 100 in received flux to be
a difference of 5 magnitudes. The zero-point can be fixed in various ways; for
historical reasons it is conventional to take Polaris to have an apparent magnitude
of 2.12 in visible light but different choices can and have been made. The absolute
magnitude is defined to be the apparent magnitude the source would have if it
were placed at a distance of 10 parsec. The relationship between the luminosity
distance of a source, its apparent magnitudem and its absolute magnitude M is,
therefore, just

dL = 101+(m−M)/5 pc. (1.8.3)

The quantity

m−M = −5+ 5 logdL(pc) (1.8.4)

is called the distance modulus. Using Equation (1.8.2) we find

m−M � 25− 5 log10H0 + 5 log cz + 1.086(1− q0)z + · · · , (1.8.5)

withH0 in km s−1 Mpc−1 and c in km s−1. Here one should remember that 1 Mpc =
106 pc and the logarithms are always defined to the base 10. The behaviour of
m(z) is sensitive to the value of q0 only for z > 0.1. In reality, as we shall see,
there are many other factors which intervene in this type of analysis with the



Them–z and N–z Relations 21

result that we can say very little about q0, or even its sign. In the regime where
it is accurate, that is for z < zmax � 0.2, Equation (1.8.5) can provide an estimate
of H0, together with a strong confirmation of the validity of the Hubble law and,
therefore, of the Cosmological Principle.
Another test of this principle is the so-called Hubble test, which relates the

number N(> l) of sources of a particular type with apparent luminosity greater
than l as a function of l. If the Universe were Euclidean and galaxies all had the
same absolute luminosity L, and were distributed uniformly with mean number-
density n0, we would have

N(l) = 4
3πn0d

3
l , (1.8.6)

with dl given by

dl =
(
L

4πl

)1/2
, (1.8.7)

from which

N(l)∝ l−3/2 (1.8.8)

and, therefore, introducing the apparent magnitude in the formm = 2.5 log10 l+
const.,

logN(l) = 0.6m+ const. (1.8.9)

Equation (1.8.9) is also true if the sources have an arbitrary distribution of lumi-
nosities around L; in this case all that changes is the value of the constant.
In the non-Euclidean case we have

N(l) = 4π
∫ r
0

n[t(r ′)]a[t(r ′)]3r ′2

(1−Kr ′2)1/2 dr ′, (1.8.10)

where t(r ′) is the time at which a source at r ′ emitted a light signal which arrives
now at the observer. If the galaxies are neither created nor destroyed in the interval
t(r) < t < t0, so that na3 = n0a30, we see that, upon expanding as a power series,
Equation (1.8.10) leads to

N(l) = 4πn0a30(
1
3r

3 + 1
10Kr

5 + · · · ). (1.8.11)

Recalling that

r = c
a0H0

[z − 1
2(1+ q0)z2 + · · · ], (1.8.12)

Equation (1.8.11) becomes

logN(l) = 3 logz − 0.651(1+ q0)z + const., (1.8.13)

from which one can, in principle, recover q0. In practice, however, there are many
effects (the most important being various evolutionary phenomena) which effec-
tively mean that the constant terms in the above equations all actually depend on
z. Nevertheless, Equation (1.8.13) works well for z < 0.2, where the term in q0 is
negligible and the constant is, effectively, constant.
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1.9 Olbers’ Paradox

Having established the behaviour of light in the expanding relativistic cosmol-
ogy, it is worth revisiting an idea from the pre-relativistic era. Before the devel-
opment of relativity, astronomers generally believed the Universe to be infinite,
homogeneous, Euclidean and static. This picture was of course shattered by the
discovery of the Hubble expansion in 1929, which we discuss in Chapter 4. It
is nevertheless interesting to point out that this model, which we might call the
Eighteenth Century Universe, gave rise to an interesting puzzle now known as
Olbers’ Paradox (Olbers 1826). As a matter of fact, Olbers’ Paradox had previ-
ously been analysed by a number of others, including (incorrectly) Halley (1720)
and (correctly) Loys de Chéseaux (1744). The argument proceeds from the simple
observation that the night sky is quite dark. In an Eighteenth Century Universe,
the apparent luminosity l of a star of absolute luminosity L placed at a distance
r from an observer is just

l = L
4πr 2

(1.9.1)

if one neglects absorption. This is the same as Equation (1.7.1). Let us assume,
for simplicity, that all stars have the same absolute luminosity and the (constant)
number density of stars per unit volume is n. The radiant energy arriving at the
observer from the whole Universe is then

ltot =
∫∞

0

L
4πr 2

4πr 2 dr = nL
∫∞

0
dr , (1.9.2)

which is infinite. This is the Olbers Paradox. It was thought in the past that this
paradox could be resolved by postulating the presence of interstellar absorption,
perhaps by dust; such an explanation was actually advanced by Lord Kelvin in the
19th century. What would happen if this were the case would be that, after a suf-
ficient time, the absorbing material would be brought into thermodynamic equi-
librium with the radiation and would then emit as much radiation as it absorbed,
though perhaps in a different region of the electromagnetic spectrum. To be fair
to Kelvin, however, one should mention that at that time it was not known that
light and heat were actually different aspects of the same phenomenon, so the
argument was reasonable given what was then known about the nature of radia-
tion.
In the modern version of the expanding Universe the conditions necessary for

an Olbers Paradox to arise are violated in a number of ways we shall discuss later:
the light from a distant star would be redshifted; the spatial geometry is not nec-
essarily flat; the Universe may not be infinite in spatial or temporal extent. In fact,
the basic reason why an Olbers Paradox does not arise in modern cosmological
theories is much simpler than any of these possibilities. The key fact is that no
star can burn for an infinite time: a star of massM can at most radiate only so long
as it takes to radiate away its rest energy Mc2. As one looks further and further
out into space, one must see stars which are older and older. In order for them
all, out to infinite distance, to be shining light that we observe now, they must
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have switched on at different times depending on their distance from us. Such a
coordination is not only unnatural, it also requires us to be in a special place. So
an Olbers Paradox would only really be expected to happen if the Universe were
actually inhomogeneous on large scales and the Copernican Principle were vio-
lated. The other effects mentioned above are important in determining the exact
amount of radiation received by an observer from the cosmological background,
but any cosmology that respects the relativistic notion that E =mc2 (and the Cos-
mological Principle) is not expected to have an infinitely bright night sky. Exactly
how much background light there is in the Universe is an observation that can
in principle be used to test cosmological models in much the same way as the
number-counts discussed in Section 1.8.

1.10 The Friedmann Equations

So far we have developed much of the language of modern relativistic cosmology
without actually using the field Equations (1.2.20). We have managed to discuss
many important properties of the universe in terms of geometry or using simple
kinematics. To go further we must use general relativity to relate the geometry
of space–time, expressed by the metric tensor gij(xk), to the matter content of
the universe, expressed by the energy–momentum tensor Tij(xk). The Einstein
equations (without the cosmological constant; see Section 1.12) are

Rij − 1
2gijR = 8πG

c4
Tij, (1.10.1)

where Rij and R are the Ricci tensor and Ricci scalar, respectively. A test particle
moves along a space–time geodesic, that is a trajectory in a four-dimensional space
whose ‘length’ is stationary with respect to small variations in the trajectory.
In cosmology, the energy–momentum tensor which is of greatest relevance is

that of a perfect fluid:

Tij = (p + ρc2)UiUj − pgij, (1.10.2)

where p is the pressure, ρc2 is the energy density (which includes the rest-mass
energy), andUk is the fluid four-velocity, defined by Equation (1.2.10). If the metric
is of Robertson–Walker type, the Einstein equations then yield

ä = −4π
3
G
(
ρ + 3

p
c2

)
a, (1.10.3)

for the time–time component, and

aä+ 2ȧ2 + 2Kc2 = 4πG
(
ρ − p

c2

)
a2, (1.10.4)

for the space–space components. The space–time components merely give 0 = 0.
Eliminating ä from (1.10.3) and (1.10.4) we obtain

ȧ2 +Kc2 = 8
3πGρa

2. (1.10.5)
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In reality, as we shall see, Equations (1.10.3) and (1.10.5) – the Friedmann equa-
tions – are not independent: the second can be recovered from the first if one
takes the adiabatic expansion of the universe into account, i.e.

d(ρc2a3) = −p da3. (1.10.6a)

The last equation can also be expressed as

ṗa3 = d
dt
[a3(ρc2 + p)] (1.10.6b)

or

ρ̇ + 3
(
ρ + p

c2

)
ȧ
a
= 0. (1.10.6 c)

1.11 A Newtonian Approach

Before proceeding further, it is worth demonstrating how one can actually get
most of the way towards the Friedmann equations using only Newtonian argu-
ments.
Birkhoff’s theorem (1923) proves that a spherically symmetric gravitational field

in an empty space is static and is always described by the Schwarzschild exterior
metric (i.e. the metric generated in empty space by a point mass). This property is
very similar to a result proved by Newton and usually known asNewton’s spherical
theorem which is based on the application of Gauss’s theorem to the gravitational
field. In the Newtonian version the gravitational field outside a spherically sym-
metric body is the same as if the body had all its mass concentrated at its centre.
Birkhoff’s theorem can also be applied to the field inside an empty spherical cav-
ity at the centre of a homogeneous spherical distribution of mass–energy, even
if the distribution is not static. In this case the metric inside the cavity is the
Minkowski (flat-space) metric: gij = ηij (ηij = −1 for i = j = 1,2,3; ηij = 1 for
i = j = 0; ηij = 0 for i ≠ j). This corollary of Birkhoff’s theorem also has a New-
tonian analogue: the gravitational field inside a homogeneous spherical shell of
matter is always zero. This corollary can also be applied if the space outside the
cavity is infinite: the only condition that must be obeyed is that the distribution
of mass–energy must be spherically symmetric.
A proof of Birkhoff’s theorem is beyond the scope of this book, but we will use

its existence to justify a Newtonian approach to the time-evolution of a homoge-
neous and isotropic distribution of material. Let us consider the evolution of the
mass m contained inside a sphere of radius l centred at the point O in such a
universe. By Birkhoff’s theorem the space inside the sphere is flat. If the radius l
is such that

Gm
lc2

 1, (1.11.1)

one can use Newtonian mechanics to describe the behaviour of the particle. Equa-
tion (1.11.1) means in effect that the free-fall time for the sphere, τff � (Gρ)−1/2, is
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much greater than the light-crossing time τ � l/c. Alternatively, Equation (1.11.1)
means that the radius of the sphere is much larger than the Schwarzschild radius
corresponding to the massm, rS = 2mG/c2.
As we have seen in Section 1.4, the Cosmological Principle requires that

l = dc aa0 , (1.11.2)

where a is the expansion parameter of the universe which, according to our con-
ventions, has the dimensions of a length, while the comoving coordinate dc is
dimensionless. One can always pick dc small enough so that at any instant the
inequality (1.11.1) is satisfied. We shall see, however, that this quantity actually
disappears from the formulae.
Applying a Newtonian approximation to describe the motion of a unit mass at

a point P on the surface of the sphere yields

d2l
dt2

= −Gm
l2

= −4π
3
Gρl, (1.11.3)

or, multiplying by l̇,
d
dt
l̇2

2
= −Gm

l2
l̇ = d

dt
Gm
l
, (1.11.4)

and, integrating,

l̇2 = 2Gm
l

+ C, (1.11.5)

which is nothing more than the law of conservation of energy per unit mass:
the constant of integration C is proportional to the total energy. From Equa-
tions (1.11.2) and (1.11.5) it is easy to obtain the Equation (1.10.4) in the form

ȧ2 +Kc2 = 8
3πGρa

2 (1.11.6)

by putting

C = −K
(
dcc
a0

)2
. (1.11.7)

It is clear that, with an appropriate redefinition of dc, one can scale K so as to
take the values 1, 0 or −1. The case K = 1 corresponds to C < 0 (negative total
energy). In this case the expansion eventually ceases and collapse ensues. In the
case K = −1 the total energy is positive, so the expansion never ends. The case
K = 0 corresponds to total energy of exactly zero: this represents the ‘escape
velocity’ situation where the expansion ceases at t →∞.
Equation (1.11.3) implies that there are no forces due to pressure gradients,

which is in accord with our assumption of homogeneity and isotropy. Equa-
tion (1.11.6) was obtained under the assumption that the sphere contains only
non-relativistic matter (p ρc2). A result from general relativity shows that, in
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the presence of relativistic particles, one should replace the density of matter in
Equation (1.11.3) by

ρeff = ρ + 3
p
c2
, (1.11.8)

where ρ now means the energy density (including the rest-mass energy) divided
by c2. In this way, Equation (1.11.3) becomes

ä = −4π
3
G
(
ρ + 3

p
c2

)
a. (1.11.9)

It is important to note that, from Equation (1.10.6a),

d(ρc2a3r 30 ) = −p d(a3r 30 ); (1.11.10)

from (1.11.9) one obtains (1.11.6) in both the non-relativistic (p � 0, ρ = ρm) and
ultra-relativistic (p � ρc2) cases. In fact Equation (1.11.9), after multiplying by ȧ,
gives

1
2
d
dt
ȧ2 = −4π

3
G
(
ρaȧ+ 3

p
c2
aȧ
)
. (1.11.11)

From (1.11.10) we have

3
p
c2
aȧ = −3ρaȧ− ρ̇a2, (1.11.12)

which, substituted in Equation (1.11.11), yields

1
2
d
dt
ȧ2 = d

dt

(
4π
3
Gρa2

)
. (1.11.13)

From Equation (1.11.13), by integration, one obtains Equation (1.11.6).
What this shows is that, with Birkhoff’s theorem and a reinterpretation of the

quantity ρ to take account of intrinsically relativistic effects, we can derive the
Friedmann equations using an essentially Newtonian approach.

1.12 The Cosmological Constant

Einstein formulated his theory of general relativity without a cosmological con-
stant in 1916; at this time it was generally accepted that the Universe was static.
We outlined the development of this theory in Section 1.2, and the field equations
themselves appear as Equation (1.10.1). A glance at the equation

ä = −4π
3
G
(
ρ + 3

p
c2

)
a (1.12.1)

shows one that universes evolving according to this theory cannot be static, unless

ρ = −3 p
c2
; (1.12.2)
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in other words, either the energy density or the pressure must be negative. Given
that this type of fluid does not seem to be physically reasonable, Einstein (1917)
modified the Equation (1.10.1) by introducing the cosmological constant term Λ:

Rij − 1
2gijR −Λgij = 8πG

c4
Tij ; (1.12.3)

as we shall see, with an appropriate choice of Λ, one can obtain a static cosmolog-
ical model. Equation (1.12.3) represents the most general possible modification
of the Einstein equations that still satisfies the condition that Tij is equal to a
tensor constructed from the metric gij and its first and second derivatives, and is
linear in the second derivative. This modification does not change the covariant
character of the equations, and does not alter the continuity condition (1.2.12).
The strongest constraint one can place on Λ from observations is that it should
be sufficiently small so as not to change the laws of planetary motion, which are
known to be well described by (1.10.1).
The Equation (1.12.3) can be written in a form similar to (1.10.1) by modifying

the energy–momentum tensor:

Rij − 1
2gijR = 8πG

c4
T̃ij, (1.12.4)

with T̃ij formally given by

T̃ij = Tij + Λc4

8πG
gij = −p̃gij + (p̃ + ρ̃c2)UiUj, (1.12.5)

where the effective pressure p̃ and the effective density ρ̃ are related to the cor-
responding quantities for a perfect fluid by

p̃ = p − Λc4

8πG
, ρ̃ = ρ + Λc2

8πG
; (1.12.6)

these relations show that |Λ|−1/2 has the dimensions of a length. One can then
show that, for a universe described by the Robertson–Walker metric, we can get
equations which are analogous to (1.10.3) and (1.10.5), respectively:

ä = −4π
3
G
(
ρ̃ + 3

p̃
c2

)
a (1.12.7)

and

ȧ2 +Kc2 = 8πG
3
ρ̃a2. (1.12.8)

These equations admit a static solution for

ρ̃ = −3 p̃
c2

= 3Kc2

8πGa2
. (1.12.9)
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For a ‘dust’ universe (p = 0), which is a good approximation to our Universe at
the present time, Equations (1.12.9) and (1.12.6) give

Λ = K
a2
, ρ = Kc2

4πGa2
. (1.12.10)

Since ρ > 0, we must have K = 1 and therefore Λ > 0. The value of Λ which makes
the universe static is just

ΛE = 4πGρ
c2

. (1.12.11)

The model we have just described is called the Einstein universe. This universe is
static (but unfortunately unstable, as one can show), has positive curvature and a
curvature radius

aE = Λ−1/2
E = c

(4πGρ)1/2
. (1.12.12)

After the discovery of the expansion of the Universe in the late 1920s there was no
longer any reason to seek static solutions to the field equations. The motivation
which had led Einstein to introduce his cosmological constant term therefore sub-
sided. Einstein subsequently regarded the Λ-term as the biggest mistake he had
made in his life. Since then, however, Λ has not died but has been the subject of
much interest and serious study on both conceptual and observational grounds.
The situation here is reminiscent of Aladdin and the genie: after he released the
genie from the lamp, it took on a life of its own. For more than 60 years the genie
lingered, providing neither compelling observational evidence of its existence nor
strong theoretical reasons for it to be taken seriously. However, observations do
now suggest that it may have been there all along. We shall return to this resur-
gence of Λ in the next chapter and also in Chapter 7, but in the meantime we
shall restrict ourselves to brief comments on two particularly important models
involving the cosmological constant, because we shall encounter them again when
we discuss inflation.
The de Sitter universe (de Sitter 1917) is a cosmological model in which the

universe is empty (p = 0; ρ = 0) and flat (K = 0). From Equations (1.12.6) we get

p̃ = −ρ̃c2 = − Λc
4

8πG
, (1.12.13)

which, on substitution in (1.12.8), gives

ȧ2 = 1
3Λc

2a2; (1.12.14)

this equation implies that Λ is positive. Equation (1.12.14) has a solution of the
form

a = A exp[(13Λ)1/2ct], (1.12.15)

corresponding to a Hubble parameter H = ȧ/a = c(Λ/3)1/2, which is actually
constant in time. In the de Sitter vacuum universe, test particles move away from
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each other because of the repulsive gravitational effect of the positive cosmolog-
ical constant.
The de Sitter model was only of marginal historical interest until the last 20

years or so. In recent years, however, it has been amajor component of inflationary
universe models in which, for a certain interval of time, the expansion assumes
an exponential character of the type (1.12.15). In such a universe the equation
of state of the fluid is of the form p � −ρc2 due to quantum effects which we
discuss in Chapter 7.
In the Lemaître model (1927) the universe has positive spatial curvature (K = 1).

One can demonstrate that the expansion parameter in this case is always increas-
ing, but there is a period in which it remains practically constant. This model
was invoked around 1970 to explain the apparent concentration of quasars at
a redshift of z � 2. Subsequent data have, however, shown that this is not the
explanation for the redshift evolution of quasars, so this model is again of only
marginal historical interest.

1.13 Friedmann Models

Having dealt with a few special cases, we now introduce the standard cosmolog-
ical models described by the solutions (1.10.3) and (1.10.5). Their name derives
from A. Friedmann, who derived their properties in 1922. His work was not well
known at that time partly because his models were not static, and the discov-
ery of the Hubble expansion was still some way in the future. His work was
in any case not widely circulated in the western scientific literature. Indepen-
dently, and somewhat later, the Belgian priest George Lemaître obtained essen-
tially the same results and his work achievedmore immediate attention, especially
in England where he was championed by Eddington. When the work of Lemaître
(1927) was published, Hubble’s observations were just becoming known, so in the
West Lemaître is often credited with being the father of the Big Bang cosmology,
although that honour should probably be conferred on Friedmann.
The Friedmann models are so important that we shall devote the next chapter

to their behaviour. Here we shall just whet the readers appetite with some basic
properties. First, we assume a perfect fluid with some density ρ and pressure p.
The form of equation of state giving p as a function of ρ does not concern us for
now; we discuss it in Section 2.1. For the moment we also ignore the cosmological
constant.
The equations we need to solve are (1.10.3) and (1.10.5), which we rewrite here

for completeness:

ä = −4π
3
G
(
ρ + 3

p
c2

)
a (1.13.1)

and

ȧ2 +Kc2 = 8πG
3
ρa2, (1.13.2)
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as well as the Equation (1.10.6)

d(ρa3) = −3 p
c2
a2 da. (1.13.3)

The Equations (1.13.1)–(1.13.3) allow one, at least in principle, to calculate the
time evolution of a(t) as well as ρ(t) and p(t) if we know the equation of state.
Let us focus for now on Equation (1.13.3), which can be rewritten in a convenient

form for a = a0:(
ȧ
a0

)2
− 8π

3
Gρ
(
a
a0

)2
= H2

0

(
1− ρ0

ρ0c

)
= H2

0(1−Ω0) = −Kc
2

a20
, (1.13.4)

where H0 = ȧ0/a0, Ω0 is the (present) density parameter and

ρ0c = 3H2
0

8πG
. (1.13.5)

The suffix ‘0’ refers here to a generic reference time t0 which is also used in the
particular case where t is the present time. Equation (1.13.5) is a reminder of the
importance of ρ0c: if ρ0 < ρ0c, then K = −1, while if ρ0 > ρ0c, K = 1; K = 0
corresponds to the ‘critical’ case when ρ0 = ρ0c.
Let us now include the cosmological constant termΛ. In Section 1.12 we showed

how one can treat the cosmological constant as a form of fluid with a strange
equation of state, as well as a modification of the law of gravity. In that sense, Λ
can be thought of as belonging either on the left-hand or right-hand side of the
Einstein equations. Either way, the upshot is that Equations (1.13.1) and (1.13.2)
become

ä = −4π
3
G
(
ρ + 3

p
c2

)
a+ Λc

2a
3

(1.13.6)

and

ȧ2 +Kc2 = 8πG
3
ρa2 + Λc

2a2

3
, (1.13.7)

respectively. If we ignore the original terms in p and ρ we can see that Equa-
tion (1.13.7) can be written in a form similar to Equation (1.13.4):

(
ȧ
a0

)2
− Λc

2

3
= H2

0

(
1− Λ

Λc

)
= H2

0(1−Ω0Λ) = −Kc
2

a20
. (1.13.8)

In this case the ‘critical’ value is

Λc = 3H2
0

c2
, (1.13.9)

so that Ω0Λ = Λc2/3H2
0 .

If we now reinstate the ‘ordinary’ matter we began with, we can see that the
curvature is zero as long as Ω0Λ +Ω0 = 1. The cosmological constant therefore
breaks the relationship between the matter density and curvature. Even if Ω0 < 1,
a suitably chosen value of Ω0Λ = 1 − Ω0 can be invoked to ensure flat space
sections.



Friedmann Models 31

Bibliographic Notes on Chapter 1

The classic papers of Einstein (1917), de Sitter (1917), Friedmann (1922) and
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erudite overview of the role of observation in expanding world models is given
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the role of general relativity in cosmology, can be found in Berry (1989), Harri-
son (1981), Kenyon (1990), Landau and Lifshitz (1975), Milne (1935), Misner et
al . (1972), Narlikar (1993), Peebles (1993), Peacock (1999), Raychaudhuri (1979),
Roos (1994), Wald (1984), Weinberg (1972) and Zel’dovich and Novikov (1983).

Problems

1. Suppose that it is discovered that Newton’s law of gravitation is incorrect, and that
the force F on a test particle of massm due to a body of mass M has an additional
term that does not depend on M and is proportional to the separation r :

F = −GMm
r 2

+ Amr
3
.

Assuming that Newton’s sphere theorem continues to hold, derive the appropriate
form of the Friedmann equation in this case and comment on your result.

2. The most general form of a space–time four-metric in the synchronous gauge is

ds2 = c2 dt2 − gαβ dxα dxβ = c2 dt2 − dl2,

where gαβ is the three-metric of the spatial hypersurfaces. By writing the equation
of the three-space as that of a constrained surface in four dimensions, show that the
most general form of the three-metric compatible with homogeneity and isotropy
is given by the Robertson–Walker form.

3. Show that the special-relativistic formula for the Doppler shift,

1+ z =
√
1+ v/c
1− v/c ,

reduces to z � v/c in the limit of small velocities. Invert the formula to give v/c in
terms of z. Calculate the recession velocity of a galaxy at z = 5 using the special-
relativistic formula.

4. A model is constructed with Ω0 < 1, Λ ≠ 0 and k = 0. Show in this case that

q0 = 3
2Ω0 − 1.

5. An object has luminosity distance dL and angular-diameter distance dA. Show that

dA
dL

= 1
(1+ z)2 ,

independent of cosmology.





2

The Friedmann
Models

2.1 Perfect Fluid Models

In this chapter we shall consider a set of homogeneous and isotropic model uni-
verses that contain a relatively simple form ofmatter. In Section 1.13 we explained
how a perfect fluid, described by an energy–momentum tensor of the type (1.10.2),
forms the basis of the so-called Friedmann models. The ideal perfect fluid is, in
fact, quite a realistic approximation in many situations. For example, if the mean
free path between particle collisions is much less than the scales of physical inter-
est, then the fluid may be treated as perfect. It should also be noted that the
form (1.10.2) is also required for compatibility with the Cosmological Principle:
anisotropic pressure is not permitted. To say more about the cosmological solu-
tions, however, we need to say more about the relationship between p and ρ. In
other words we need to specify an equation of state.
As we mentioned in the last section of the previous chapter, we need to spec-

ify an equation of state for our fluid in the form p = p(ρ). In many cases of
physical interest, the appropriate equation of state can be cast, either exactly or
approximately, in the form

p = wρc2 = (Γ − 1)ρc2, (2.1.1)

where the parameter w is a constant which lies in the range

0 � w � 1. (2.1.2)

We do not use the parameter Γ = 1+w further in this book, but we have defined
it here as it is used by other authors. The allowed range of w given in (2.1.2) is
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often called the Zel’dovich interval. We shall restrict ourselves for the rest of this
chapter to cosmological models containing a perfect fluid with equation of state
satisfying this condition.
The case withw = 0 represents dust (pressureless material). This is also a good

approximation to the behaviour of any form of non-relativistic fluid or gas. Of
course, gas of particles at some temperature T does exert pressure but the typical
thermal energy of a particle is approximately kBT (kB is the Boltzmann constant),
whereas its rest mass is mpc2, usually very much larger. The relativistic effect
of pressure is usually therefore negligible. In more detail, an ideal gas of non-
relativistic particles of mass mp, temperature T , density ρm and adiabatic index
γ exerts a pressure

p = nkBT = kBT
mpc2

ρmc2 = kBT
mpc2

ρc2

1+ (kBT/((γ − 1)mpc2))
= w(T)ρc2, (2.1.3)

where ρc2 is the energy density; a non-relativistic gas has w(T)  1 according
to Equation (2.1.3) and will therefore be well approximated by a fluid of dust.
At the other extreme, a fluid of non-degenerate, ultrarelativistic particles in

thermal equilibrium has an equation of state of the type

p = 1
3ρc

2. (2.1.4)

For instance, this is the case for a gas of photons. A fluid with an equation of
state of the type (2.1.4) is usually called a radiative fluid, though it may comprise
relativistic particles of any form.
It is interesting to note that the parameter w is also related to the adiabatic

sound speed of the fluid

vs =
(
∂p
∂ρ

)1/2
S
, (2.1.5)

where S denotes the entropy. In a dust fluid vs = 0 and a radiative fluid has
vs = c/

√
3. Note that the case w > 1 is impossible, because it would imply that

vs > c. Ifw < 0, then it is no longer related to the sound speed, which would have
to be imaginary. These two cases form the limits in (2.1.2). There are, however,
physically important situations in which matter behaves like a fluid with w < 0,
as we shall see later.
We shall restrict ourselves to the case wherew is constant in time. We shall also

assume that normal matter, described by an equation of state of the form (2.1.3),
can be taken to have w(T) � 0. From Equations (2.1.1) and (1.13.3) we can easily
obtain the relation

ρa3(1+w) = const. = ρ0wa3(1+w)0 . (2.1.6)

In this equation and hereafter we use the suffix ‘0’ to denote a reference time,
usually the present. In particular we have, for a dust universe (w = 0) or a matter
universe described by (2.1.3),

ρa3 ≡ ρma3 = const. = ρ0ma30 (2.1.7)
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(which simply represents the conservation of mass), and for a radiative universe
(w = 1

3 )

ρa4 ≡ ρra4 = const. = ρ0ra40. (2.1.8)

If one replaces the expansion parameter a with the redshift z, one finds, for dust
and non-relativistic matter,

ρm = ρ0m(1+ z)3, (2.1.9)

and, for radiation and relativistic matter,

ρr = ρ0r(1+ z)4. (2.1.10)

The difference between (2.1.9) and (2.1.10) can be understood quite straightfor-
wardly if one considers a comoving box containing, say,N particles. Let us assume
that, as the box expands, particles are neither created nor destroyed. If the par-
ticles are non-relativistic (i.e. if the box contains ‘dust’), then the density simply
decreases as the cube of the scale factor, equivalent to (2.1.9). On the other hand,
if the particles are relativistic, then they behave like photons: not only is their
number-density diluted by a factor a3, but also the wavelength of each particle is
increased by a factor a resulting in a redshift z. Since the energy of the particles
is inversely proportional to their wavelength the total energy must decrease as
the fourth power of the scale factor.
Notice the peculiar case in which w = −1 in (2.1.6), which we demonstrated

to be the perfect fluid equivalent of a cosmological constant. The energy density
does not vary as the universe expands for this kind of fluid.
Models of the Universe made from fluids with −1

3 < w < 1 have the property
that they possess a point in time where a vanishes and the density diverges. This
instant is called the Big Bang singularity. To see how this singularity arises, let
us rewrite Equation (1.13.4) of the previous chapter using (2.1.6). Introducing the
density parameter

Ω0w = ρ0w
ρ0c

(2.1.11)

allows us to obtain the equation

(
ȧ
a0

)2
= H2

0

[
Ω0w

(
a0
a

)1+3w
+ (1−Ω0w)

]
(2.1.12)

or, alternatively,

H2(t) = H2
0

(
a0
a

)2[
Ω0w

(
a0
a

)1+3w
+ (1−Ω0w)

]
, (2.1.13)

where H(t) = ȧ/a is the Hubble parameter at a generic time t. Suppose at some
generic time, t (for example the present time, t0), the universe is expanding, so
that ȧ(t) > 0. From Equation (1.13.1), we can see that ä < 0 for all t, provided
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Figure 2.1 The concavity of a(t) ensures that, if ȧ(t) > 0 for some time t, then there
must be a singularity a finite time in the past, i.e. a point when a = 0. It also ensures that
the age of the Universe, t0, is less than the Hubble time, 1/H0.

(ρ+3p/c2) > 0 or, in other words, (1+3w) > 0 since ρ > 0. This establishes that
the graph of a(t) is necessarily concave. One can see therefore that a(t)must be
equal to zero at some finite time in the past, and we can label this time t = 0 (see
Figure 2.1). Since a(0) = 0 at this point, the density ρ diverges, as does the Hubble
expansion parameter. One can see also that, because a(t) is a concave function,
the time between the singularity and the epoch t must always be less than the
characteristic expansion time of the Universe, τH = 1/H = a/ȧ.
The Big Bang singularity is unavoidable in all homogeneous and isotropic mod-

els containing fluids with equation-of-state parameter w > −1
3 , which includes

the Zel’dovich interval (2.1.2). It can be avoided, for example, in models with a
non-zero cosmological constant, or if the universe is dominated by ‘matter’ with
an effective equation-of-state parameter w < −1

3 . One might suspect that the sin-
gularity may simply be a consequence of the special symmetry of the Friedmann
models, and that inhomogeneous and/or anisotropic models would not display
such a feature. However, this is not the case, as was shown by the classic work of
Hawking an Penrose. We shall return to the unavoidability of the Big Bang singu-
larity later, in Chapter 6.
Note that the expansion of the universe described in the Big Bang model is

not due in any way to the effect of pressure, which always acts to decelerate
the expansion, but is a result of the initial conditions describing a homogeneous
and isotropic universe. Another type of initial condition compatible with the Cos-
mological Principle are those which lead to an isotropic collapse of the universe
towards a singularity like a time-reversed Big Bang, often called a Big Crunch.

2.2 Flat Models

In this section we shall find the solution to Equation (2.1.12) appropriate to a flat
universe, i.e. with Ωw = 1. When w = 0 this solution is known as the Einstein–
de Sitter universe; we shall also give this name to solutions with other values of
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w ≠ 0. For Ωw = 1, Equation (2.1.12) becomes

(
ȧ
a0

)2
= H2

0

(
a0
a

)1+3w
= H2

0(1+ z)1+3w, (2.2.1)

which one can immediately integrate to obtain

a(t) = a0
(
t
t0

)2/3(1+w)
. (2.2.2)

This equation shows that the expansion of an Einstein–de Sitter universe lasts an
indefinite time into the future; Equation (2.2.2) is equivalent to the relation

t = t0(1+ z)−3(1+w)/2, (2.2.3)

which relates cosmic time t to redshift z. From Equations (2.2.2), (2.2.3) and (2.1.6),
we can derive

H ≡ ȧ
a
= 2
3(1+w)t = H0

t0
t
= H0(1+ z)3(1+w)/2, (2.2.4a)

q ≡ −aä
ȧ2

= 1+ 3w
2

= const. = q0, (2.2.4b)

t0w ≡ t0 = 2
3(1+w)H0

, (2.2.4 c)

ρ = ρ0w
(
t
t0

)−2
= 1
6(1+w)2πGt2 ; (2.2.4d)

in the last expression we have made use of the relation

ρ0wt20 ≡ ρ0ct20w = 3H2
0

8πG

[
2

3(1+w)H0

]2
= 1
6(1+w)2πG. (2.2.5)

Useful special cases of the above relationship are dust, or matter-dominated uni-
verses (w = 0),

a(t) = a0
(
t
t0

)2/3
, (2.2.6a)

t = t0(1+ z)−3/2, (2.2.6b)

H = 2
3t

= H0(1+ z)3/2, (2.2.6 c)

q0 = 1
2 , (2.2.6d)

t0m ≡ t0 = 2
3H0

, (2.2.6 e)

ρm = 1
6πGt2

; (2.2.6f )
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and radiation-dominated universes (w = 1
3 ),

a(t) = a0
(
t
t0

)1/2
, (2.2.7a)

t = t0(1+ z)−2, (2.2.7b)

H = 1
2t

= H0(1+ z)2, (2.2.7 c)

q0 = 1, (2.2.7d)

t0r ≡ t0 = 1
2H0

, (2.2.7 e)

ρr = 3
32πGt2

. (2.2.7f )

A general property of flat-universe models is that the expansion parameter a
grows indefinitely with time, with constant deceleration parameter q0. The com-
ments we made above about the role of pressure can be illustrated again by the
fact that increasing w and, therefore, increasing the pressure causes the deceler-
ation parameter also to increase. Conversely, and paradoxically, a negative value
ofw indicating behaviour similar to a cosmological constant corresponds to neg-
ative pressure (tension) but nevertheless can cause an accelerated expansion (see
Section 2.8 later).
Note also the general result that in such models the age of the Universe, t0, is

closely related to the present value of the Hubble parameter, H0.

2.3 Curved Models: General Properties

After seeing the solutions corresponding to flat models with Ωw = 1, we now
look at some properties of curved models with Ωw ≠ 1. We begin by looking at
the behaviour of these models at early times.
In (2.1.12) and (2.1.13) the term (1 −Ω0w) inside the parentheses is negligible

with respect to the other term, while

a0
a

= 1+ z� |Ω−1
0w − 1|1/(1+3w) ≡ a0

a∗
= 1+ z∗. (2.3.1)

During the interval 0 < a  a∗, Equations (2.1.12) and (2.1.13) become, respec-
tively, (

ȧ
a0

)2
� H2

0Ω0w

(
a0
a

)1+3w
= H2

0Ω0w(1+ z)1+3w (2.3.2)

and

H2 � H2
0Ω0w

(
a0
a

)3(1+w)
= H2

0Ω0w(1+ z)3(1+w), (2.3.3)
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which are exactly the same as those describing the case Ωw = 1, as long as one
replaces H0 by H0Ω

1/2
w . In particular, we have

H � H0Ω
1/2
0w (1+ z)3(1+w)/2 (2.3.4)

and

t � t0wΩ−1/2
0w (1+ z)−3(1+w)/2. (2.3.5)

At early times, all these models behave in a manner very similar to the Einstein–
de Sitter model at times sufficiently close to the Big Bang. In other words, it is
usually a good approximation to ignore curvature termswhen dealing withmodels
of the very early Universe. The expressions for ρ(t) and q(t) are not modified,
because they do not contain explicitly the parameter H0.

2.3.1 Open models

In models with Ωw < 1 (open universes), the expansion parameter a grows indef-
initely with time, as in the Einstein–de Sitter model. From (2.1.12), we see that
ȧ is never actually zero; supposing that this variable is positive at time t0, the
derivative ȧ remains positive forever. The first term inside the square brackets
in (2.1.12) is negligible for a(t)� a(t∗) = a∗, where a∗ is given by (2.3.1)

a∗ = a0
(
Ω0w

1−Ω0w

)1/(1+3w)
(2.3.6)

(in the casewithw = 0 this time corresponds to a redshift z∗ = (1−Ω0)/Ω0 � Ω−1
0

if Ω 1); before t∗ the approximation mentioned above will be valid, so

t∗ � t0wΩ−1/2
0w

(
a∗

a0

)3(1+w)/2
= t0wΩ−1/2

0w

(
Ω0w

1−Ω0w

)3(1+w)/2(1+3w)
. (2.3.7)

For t� t∗ one obtains, in the same manner,

ȧ � a0H0Ω
1/2
0w

(
a0
a∗

)(1+3w)/2
= a0H0(1−Ω0w)1/2 (2.3.8)

and hence

a � a0H0(1−Ω0w)1/2t = a∗ 2
3(1+w)

t
t∗

� a∗ t
t∗
. (2.3.9)

One therefore obtains

H = ȧ
a
� t−1, (2.3.10a)

q � 0, (2.3.10b)

ρ � ρocΩ0w

[H0(1−Ω0w)1/2t]3(1+w)
� ρ(t∗)

(
t
t∗

)−3(1+w)
. (2.3.10 c)
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0 < 1

0 = 1

0 > 1

a(t)

t

Ω

Ω

Ω

Figure 2.2 Evolution of the expansion parameter a(t) in an open model (Ω0 < 1), flat
or Einstein–de Sitter model (Ω0 = 1) and closed model (Ω0 > 1).

It is interesting to note that, if t0 is taken to coincide with t∗, equation (2.3.6)
implies

Ω0w(t∗) = 1
2 ; (2.3.11)

the parameterΩ0w(t) passes from a value very close to unity, at t t∗, to a value
of 1

2 , for t = t∗, and to a value closer and closer to zero for t� t∗.

2.3.2 Closed models

In models with Ωw > 1 (closed universes) there exists a time tm at which the
derivative ȧ is zero. From (2.1.12), one can see that

am ≡ a(tm) = a0
(
Ω0w

Ω0w − 1

)1/(1+3w)
. (2.3.12)

After the time tm the expansion parameter decreases with a derivative equal in
modulus to that holding for 0 � a � am: the curve ofa(t) is therefore symmetrical
around am. At tf = 2tm there is another singularity in a symmetrical position with
respect to the Big Bang, describing a final collapse or Big Crunch.
In Figure 2.2 we show a graph of the evolution of the expansion parameter a(t)

for open, flat and closed models.

2.4 Dust Models

Models withw = 0 have an exact analytic solution, even for the case where Ω ≠ 1
(we gave the solution for Ω = 1 in Section 2.2). In this case, Equation (2.1.12)
becomes (

ȧ
a0

)2
= H2

0

(
Ω0
a0
a

+ 1−Ω0

)
. (2.4.1)
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2.4.1 Open models

For these models Equation (2.4.1) has a solution in the parametric form:

a(ψ) = a0 Ω0

2(1−Ω0)
(coshψ− 1), (2.4.2)

t(ψ) = 1
2H0

Ω0

(1−Ω0)3/2
(sinhψ−ψ). (2.4.3)

We can obtain an expression for t0 from the two preceding relations

t0 = 1
2H0

Ω0

(1−Ω0)3/2

[
2
Ω0
(1−Ω0)1/2 − cosh−1

(
2
Ω0

− 1
)]
>

2
3H0

. (2.4.4)

Equation (2.4.4) has the following approximate form in the limit Ω 1:

t0 � (1+Ω0 lnΩ0)
1
H0
. (2.4.5)

2.4.2 Closed models

For these models Equation (2.4.1) has a parametric solution in the form of a
cycloid:

a(ϑ) = a0 Ω0

2(Ω0 − 1)
(1− cosϑ), (2.4.6)

t(ϑ) = 1
2H0

Ω0

(Ω0 − 1)3/2
(ϑ − sinϑ). (2.4.7)

The expansion parameter a(t) grows in time for 0 � ϑ � ϑm = π . The maximum
value of a is

am = a(ϑm) = a0 Ω
Ω − 1

, (2.4.8)

which we have obtained previously in (2.3.12), occurring at a time tm given by

tm = t(ϑm) = π
2H0

Ω0

(Ω0 − 1)3/2
. (2.4.9)

The curve of a(t) is symmetrical around tm, as we have explained before. One can
obtain an expression for t0 from Equations (2.4.6) and (2.4.7). The result is

t0 = 1
2H0

Ω0

(Ω0 − 1)3/2

[
cos−1

(
2
Ω0

− 1
)
− 2
Ω0
(Ω0 − 1)1/2

]
<

2
3H0

. (2.4.10)
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2.4.3 General properties

In the dust models it is possible to calculate analytically in terms of redshift all
the various distance measures introduced in Section 1.7. Denote by t the time of
emission of a light signal from a source and t0 the moment of reception of the
signal by an observer. We have then, from the definition of the redshift of the
source,

a(t) = a0
1+ z . (2.4.11)

From the Robertson–Walker metric one obtains

f(r) =
∫ r
0

dr ′

(1−Kr ′2)1/2
=
∫ t0
t

c dt′

a(t′)
=
∫ a0
a(t)

c da′

a′ȧ′
, (2.4.12)

where r is the comoving radial coordinate of the source. From (2.4.11) and (2.1.12)
with w = 0, Equation (2.4.12) becomes

f(r) = c
a0H0

∫ 1
(1+z)−1

[
1−Ω0 + Ω0

x

]−1/2 dx
x
. (2.4.13)

One can use (2.4.13) to show that, for any value of K (and therefore of Ω0),

r = 2c
H0a0

Ω0z + (Ω0 − 2)[−1+ (Ω0z + 1)1/2]
Ω2
0(1+ z)

. (2.4.14)

From Equation (1.7.3) of the previous chapter, the luminosity distance of a source
is then

dL = 2c
H0Ω2

0

{Ω0z + (Ω0 − 2)[−1+ (Ω0z + 1)1/2]}, (2.4.15)

a result sometimes known as the Mattig formula. Analogous relationships can be
derived for the other important cosmological distances.
Another relation which we can investigate is that between cosmic time t and

redshift z. From (2.1.13), for w = 0, we easily find that

dt = − 1
H0
(1+ z)−2(1+Ωz)−1/2 dz. (2.4.16)

The integral of (2.4.16) from the time of emission of a light signal until it is
observed at t, where it has a redshift z, is

t(z) = 1
H0

∫∞

z
(1+ z′)−2(1+Ωz′)−1/2 dz′. (2.4.17)

Thus we can think of redshift z as being a coordinate telling us the cosmic time at
which light was emitted from a source; this coordinate runs from infinity if t = 0,
to zero if t = t0. For z� 1 and Ω0z� 1 Equation (2.4.17) becomes

t(z) � 2

3H0Ω
1/2
0

z−3/2 � 2

3H0Ω
1/2
0

(1+ z)−3/2, (2.4.18)
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which is a particular case of Equation (2.3.5). We can therefore define a look-back
time by

tlb = t0 − t(z) = 1
H0

∫ z
0
(1+ z′)−2(1+Ω0z′)−1/2 dz′. (2.4.19)

This represents the time elapsed since the emission of a signal which arrives now,
at t0, with a redshift z. In other words, the time it has taken light to reach us from
a source which we observe now at a redshift z.

2.5 Radiative Models

Themodels withw = 1
3 also have simple analytic solutions forΩr ≠ 1 (the solution

for Ωr = 1 was given in Section 2.2). Equation (2.1.12) can be written in the form

(
ȧ
a0

)2
= H2

0

[
Ω0r

(
a0
a

)2
+ (1−Ω0r)

]
; (2.5.1)

the solution is

a(t) = a0(2H0Ω
1/2
0r t)

1/2
(
1+ 1−Ω0r

2Ω1/2
0r

H0t
)1/2
. (2.5.2)

2.5.1 Open models

For t� t∗r or, alternatively, (a� a∗r ), where

t∗r = 2
H0

Ω1/2
0r

1−Ω0r
, (2.5.3a)

a∗r = a0
(
Ω0r

1−Ω0r

)1/2
. (2.5.3b)

Equation (2.5.2) shows that the behaviour of a(t) takes the form of an undeceler-
ated expansion

a(t) � a0(1−Ω0r)1/2H0t. (2.5.4)

One can also find the present cosmic time by putting a = a0 in this equation:

t0 = 1
H0

1

Ω1/2
0r + 1

>
1

2H0
. (2.5.5)
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2.5.2 Closed models

In this case Equation (2.5.2) shows that there is a maximum value of a at

am = a0
(
Ω0r

Ω0r − 1

)1/2
(2.5.6)

at a time

tm = 1
H0

Ω1/2
0r

Ω0r − 1
. (2.5.7)

The function a(t) is symmetrical around tm. One obtains an expression for t0 by
putting a = a0 in (2.5.2); the result is

t0 = 1
H0

1

Ω1/2
0r + 1

<
1

2H0
. (2.5.8)

There obviously also exists another solution of Equation (2.5.2), say t′0, obtained
by reflecting t0 around tm; at this time ȧ(t′0) < 0.

2.5.3 General properties

The formula analogous to (2.4.16) is, in this case,

dt = − 1
H0
(1+ z)−2[1+Ω0rz(2+ z)]−1/2 dz. (2.5.9)

For z� 1 and Ω0rz� 1, Equation (2.5.9) yields

t(z) � 1

2H0Ω
1/2
0r

z−2 � 1

2H0Ω
1/2
0r

(1+ z)−2, (2.5.10)

which is, again, a particular case of (2.3.5).

2.6 Evolution of the Density Parameter

In most of the expressions derived so far in this chapter, the quantity that appears
isΩw0 or, in the special case ofw = 0, justΩ0. This is simply because we have cho-
sen to parametrise the solutions with the value ofΩ at the time t = t0. However, it
is very important to bear in mind that Ω is a function of time in all these models.
If we instead wish to calculate the density parameter at an arbitrary redshift z,
the relevant expression is

Ωw(z) = ρw(z)
[3H2(z)/8πG]

, (2.6.1)

where ρw(z) is, from (2.1.6),

ρw(z) = ρ0w(1+ z)3(1+w), (2.6.2)
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and the Hubble constant H(z) is, from (2.1.13),

H2(z) = H2
0(1+ z)2[Ω0w(1+ z)1+3w + (1−Ω0w)]. (2.6.3)

Equation (2.6.1) then becomes

Ωw(z) = Ω0w(1+ z)1+3w
(1−Ω0w)+Ω0w(1+ z)1+3w ; (2.6.4)

this relation looks messy but can be written in the more useful form

Ω−1
w (z)− 1 = Ω−1

0w − 1

(1+ z)1+3w , (2.6.5)

which will be useful later on, particularly in Chapter 7. Notice that ifΩ0w > 1, then
Ωw(z) > 1 for likewise, if Ω0w < 1, then Ωw(z) < 1 for all z; on the other hand, if
Ω0w = 1, then Ωw(z) = 1 for all time. The reason for this is clear: the expansion
cannot change the sign of the curvature parameter K. also worth noting that, as z
tends to infinity, i.e. as we move closer and closer to the Big Bang, Ωw(z) always
tends towards unity.
These results have already been obtained in different forms in the previous

parts of this chapter: one can summarise them by saying that any universe with
Ωw ≠ 1 behaves like an Einstein–de Sitter model in the vicinity of the Big Bang. We
shall come back to this later when we discuss the flatness problem, in Chapter 7.

2.7 Cosmological Horizons

Consider the question of finding the set of points capable of sending light signals
that could have been received by an observer up to some generic time t. For
simplicity, place the observer at the origin of our coordinate system O. The set of
points in question can be said to have the possibility of being causally connected
with the observer at O at time t. It is clear that any light signal received at O by
the time t must have been emitted by a source at some time t′ contained in the
interval between t = 0 and t. The set of points that could have communicated
with O in this way must be inside a sphere centred upon O with proper radius

RH(t) = a(t)
∫ t
0

c dt′

a(t′)
. (2.7.1)

In (2.7.1), the generic distance c dt′ travelled by a light ray between t′ and t′ +
dt′ has been multiplied by a factor a(t)/a(t′), in the same way as one obtains
the relative proper distance between two points at time t. In (2.7.1), if one takes
the lower limit of integration to be zero, there is the possibility that the integral
diverges because a(t) also tends to zero for small t. In this case the observer
at O can, in principle, have received light signals from the whole Universe. If, on
the other hand, the integral converges to a finite value with this limit, then the
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spherical surface with centre O and radius RH is called the particle horizon at
time t of the observer. In this case, the observer cannot possibly have received
light signals, at any time in his history, from sources which are situated at proper
distances greater than RH(t) from him at time t. The particle horizon thus divides
the set of all points into two classes: those which can, in principle, have been
observed by O (inside the horizon), and those which cannot (outside the horizon).
From (2.1.12) and (2.7.1) we obtain

RH(t) = c
H0

a(t)
a0

∫ a(t)
0

da′

a′[Ω0w(a0/a′)1+3w + (1−Ω0w)]1/2
. (2.7.2)

The integral in (2.7.2) can be divergent because of contributions near to the Big
Bang, when a(t) is tending to zero. At such times, the second term in the square
brackets is negligible compared with the first, and one has

RH(t) � c
H0Ω

1/2
0w

2
3w + 1

(
a
a0

)3(1+w)/2
, (2.7.3)

which is finite and which also vanishes as a(t) tends to zero. It can also be shown
that

RH(t) � 3
1+w
1+ 3w

ct. (2.7.4)

The solution (2.7.4) is valid exactly in any case ifΩw = 1; interesting special cases
are RH(t) = 3ct for the flat dust model and RH(t) = 2ct for a flat radiative model.
For reference, the integral in (2.7.2) can be solved exactly in the case w = 0 and

Ω0 ≠ 1. The result is

RH(t) = c
H0(1−Ω0)1/2

(1+ z)−1 cosh−1
[
1− 2(Ω0 − 1)

Ω0
(1+ z)−1

]
(2.7.5a)

and

RH(t) = c
H0(Ω0 − 1)1/2

(1+ z)−1 cos−1
[
1− 2(Ω0 − 1)

Ω0
(1+ z)−1

]
, (2.7.5b)

in the cases Ω0 < 1 and Ω0 > 1, respectively. The previous analysis establishes
that there does exist a particle horizon in Friedmann models with equation-of-
state parameter 0 � w � 1. Notice, however, that in a pure de Sitter cosmological
model, which expands exponentially and lasts forever, there is no particle horizon
because the integral (2.7.1) is not finite. We shall return to the nature of these
horizons and some problems connected with them in Chapter 7.
We should point out the distinction between the cosmological particle hori-

zon and the Hubble sphere, or speed-of-light sphere, Rc . The radius of the Hubble
sphere, the Hubble radius, is defined to be the distance from O of an object mov-
ing with the cosmological expansion at the velocity of light with respect to O. This
can be seen very easily to be

Rc = caȧ = c
H
, (2.7.6)
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by virtue of the Hubble expansion law. One can see that, if p > −1
3ρc

2, the value
of Rc coincides, at least to order of magnitude, with the distance to the particle
horizon, RH. For example, if Ωw = 1, we have

Rc = 3
2(1+w)ct = 1

2(1+ 3w)RH � RH. (2.7.7)

One can think of Rc as being the proper distance travelled by light in the charac-
teristic expansion time, or Hubble time, of the universe, τH, where

τH ≡ a
ȧ
= 1
H
. (2.7.8)

The Hubble sphere is, however, not the same as the particle horizon. For one
thing, it is possible for objects to be outside an observer’s Hubble sphere but
inside his particle horizon. It is also the case that, once inside an observer’s
horizon, a point stays within the horizon forever. This is not the case for the
Hubble sphere: objects can be within the Hubble sphere at one time t, outside
it sometime later, and, later still, they may enter the sphere again. The key dif-
ference is that the particle horizon at time t takes account of the entire past
history of the observer up to the time t, while the Hubble radius is defined
instantaneously at t. Nevertheless, in some cosmological applications, the Hub-
ble sphere plays an important role which is similar to that of the horizon, and is
therefore often called the effective cosmological horizon. We shall see the impor-
tance of the Hubble sphere when we discuss inflation, and also the physics of
the growth of density fluctuations. It also serves as a reminder of the astonish-
ing fact that the Hubble law in the form (1.4.6) is an exact relation no matter
how large the distance at which it is applied. Recession velocities greater than the
speed of light do occur in these models as when the proper distance is larger than
Rc = c/H0.
There is yet another type of horizon, called the event horizon, which is a most

useful concept in the study of black holes but is usually less relevant in cosmology.
The event horizon again divides space into two sets of points, but it refers to the
future ability of an observer O to communicate. The event horizon thus separates
those points which can emit signals that O can, in principle, receive at some time
in the future from those that cannot. The mathematical definition is the same as
in (2.7.1) but with the limits of the integral changed to run from t to either tmax,
which is either tf (the time of the Big Crunch) in a closed model, or t = ∞ in a flat
or open model. The radius of the event horizon is given by

RE(t) = a(t)
∫ tmax

t

c dt′

a(t′)
. (2.7.9)

The event horizon does not exist in Friedmann models with −1
3 < w < 1, but does

exist in a de Sitter model.
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Figure 2.3 Illustration of the behaviour of angular diameters and distances as functions
of redshift for cosmologicalmodels with andwithout curvature and cosmological constant
terms. From Hamilton (1998).
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2.8 Models with a Cosmological Constant

We have already shown how a cosmological constant can be treated as a fluid
with equation of state p = −ρc2, i.e. with w = −1. We know, however, that there
is at least some non-relativistic matter and some radiation in the Universe, so
a model with only a Λ term can not be anything like complete. In mixed mod-
els, with more than one type of fluid and/or contributions from a cosmological
constant, the equations describing the evolution become more complicated and
closed-form solutions much harder to come by. This is not a problem in the era of
fast computers, however, as equivalent results to those of single-fluid cases can
be solved by numerical integration.
Many of the results we have developed so far in this chapter stem from the

expression (2.1.12), which is essentially the Equation (1.13.2) in different vari-
ables. The generalisation to the multi-component case is quite straightforward. In
cases involving matter, radiation and a cosmological constant, for example, the
appropriate form is

(
ȧ
a0

)2
= H2

0

[
Ω0m

(
a
a0

)
+Ω0r

(
a
a0

)2
+Ω0Λ

(
a
a0

)−2
+(1−Ω0m−Ω0r−Ω0Λ)

]
. (2.8.1)

The simpler forms of this expression, like (2.1.12), are what we have been using
to work out such things as the relationship between t0 and H0 for given values
of Ω0. In the presence of a cosmological constant there is generally no simple
equation relating Ω0, Ω0Λ and t0. A closed-form expression is, however, available
for the k = 0 models containing a cosmological constant and dust mentioned at
the end of Chapter 1. In such cases

t0 = 2
3H0

[
1

2
√
1−Ω0

log
1+ √1−Ω0

1− √1−Ω0

]
. (2.8.2)

Generally speaking, however, one can see that a positive cosmological constant
term tends to act in the direction of accelerating the universe and therefore tends
to increase the age relative to decelerated models for the same value of H0. The
cosmological constant also changes the relationship between r and z through the
form of f(r) shown in Equation (2.4.13). Since ȧmust now include a contribution
from theΩ0Λ terms in Equation (2.8.1), the value of f(r) for a given redshift z will
actually be larger in an accelerated model than in a decelerated example. This has
a big effect on the luminosity distance to a given redshift z as well as the volume
surveyed as a function of z. This is illustrated dramatically in Figure 2.3. We shall
return to these potential observational consequences of a cosmological constant
in Chapter 4.

Bibliographic Notes on Chapter 2

Most of the material for this chapter is covered in standard cosmological texts. In
particular, see Weinberg (1972), Berry (1989), Narlikar (1993) and Peacock (1999).
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Problems

1. For a universe with k = 0 and in which (a/a0) = (t/t0)n, where n < 1, show that
the coordinate distance of an object seen at redshift z is

r = ct0
(1−n)a0 [1− (1+ z)

1−1/n].

For n = 2
3 deduce that the present proper distance to a quasar at redshift z = 5 is

2c
H0
τ0
(
1− 1√

6

)
,

where H0 is present value of the Hubble constant.

2. Consider a dust model in the limitΩ0 → 0. On the one hand, this is an example of an
open Friedmann model which has negatively curved spatial sections. On the other
hand, being undecelerated and purely kinematic, it ought to be described by special
relativity, which is described by the flat metric of Minkowski space. Can these two
views be reconciled?

3. By substituting in (2.4.1), show that the parametric open solution given by (2.4.2)
and (2.4.3) does indeed solve the Friedmann equation. Repeat the exercise for the
closed solution (2.4.6) and (2.4.7).

4. A closed Friedmann universe contains a single perfect fluid with an equation of
state of the form p = wρc2. Transforming variables to conformal time τ using
dt = a(t)dτ , show that the variabley = a(1+3w)/2 is described by a simple harmonic
equation as a function of τ . Hence argue that all closed Friedmann models with a
given equation of state have the same conformal lifetime.

5. Calculate the present proper distance to the event horizon in a de Sitter model
described by (1.2.14). What is the radius of the Hubble sphere in this case? Is there
a particle horizon in this model?

6. A flat matter-dominated (Einstein–de Sitter) universe is populated with galaxies at
various proper distances l from an observer at the origin. The distance of these
galaxies increases with cosmological proper time in a manner described by the Hub-
ble law. If the galaxies emit light at various times te, calculate the locus of points in
the l–te plane that lie on the observer’s past light cone (i.e. those points that emit
light at te that can be detected at t = t0 by the observer). Show that the maximum
proper distance of a galaxy on this locus is lmax = 4

9ct0.



3

Alternative
Cosmologies

Most of this book is devoted to a survey of the standard (Big Bang) cosmology and
its consequences for the large-scale structure of the Universe. We nevertheless
feel it is important to mention some non-standard cosmologies as illustrations
of how different world models can behave. Some of these alternative cosmologies
have been important in the past, during the development of modern cosmology as
an observational science. Others are more recent speculations about how the Big
Bang model may be affected by developments in fundamental physics. Although
there are good grounds for believing that the standard cosmology is basically
correct, one should never close one’s eyes to the possibility that it may turn out
to be wrong and that one of the non-standard alternatives may be a better or
more complete description of reality. We have not the space, however, to give a
panoramic view of all possible alternative cosmologies so we shall concentrate on
a few which are of particular historical or contemporary interest and confine our-
selves to brief remarks upon them. Those readers not interested in this material
may skip this chapter at a first reading.
Before proceeding, we should remind the reader that the fundamentals of

the standard Big Bang model are essentially the theory of general relativity, the
expanding Universe and the Cosmological Principle. These basic assumptions
allow the flexibility to incorporate the models of Einstein, de Sitter and Lemaître
characterised by Λ ≠ 0 in Section 1.11 within this standard framework. These
models are of historical interest as well as sharing many of the modern ‘inflation-
ary’ cosmologies constructed using a scalar field whose vacuum energy essen-
tially plays the role of a time-varying cosmological constant. We discuss inflation
in more detail in Chapter 7.
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3.1 Anisotropic and Inhomogeneous Cosmologies

The Cosmological Principle plays such an important role in the development of the
Friedmann models that it is well worth looking at the consequences of relaxing
the assumptions of homogeneity and isotropy. One motivation for this is that
the Universe is neither homogeneous nor isotropic. In the standard cosmology,
however, variations in density are treated as perturbations of a Friedmann model.
This means that structure-formation theory is inherently approximate. It would
be nice to be able to solve Einstein’s equations exactly for lumpy models, but
this is extremely difficult except in cases of special symmetry. Indeed, only a few
exact anisotropic or inhomogeneous cosmological solutions are known. We shall
discuss a few examples here, just to give an idea of the different behaviour one
might expect.

3.1.1 The Bianchi models

The first class of non-standard models we discuss are spatially homogeneous but
anisotropic. In the Friedmann models the constant time surfaces upon which the
matter density is constant are surfaces of constant cosmological proper time. We
can give a more general definition of homogeneity by requiring that all comov-
ing observers see essentially the same version of cosmic history. In mathematical
terms this means that there must be some symmetry that relates what the Uni-
verse looks like as seen by observer A to what is seen in a coordinate system
centred on any other observer B. The possible symmetries can be classified into
classes usually called the Bianchi types, although there is one peculiar solution
of the Einstein equations, called the Kantowski–Sachs solution, that does not fit
into this scheme.
The Bianchi classification is based on the construction of spacelike hypersur-

faces upon which it is possible to define at least three independent vector fields,
ξα (α and other Greek indices run from 1 to 3), that satisfy the constraint

ξi;j + ξj;i = 0. (3.1.1)

This is called Killing’s equation and the vectors that satisfy it are called Killing
vectors. The commutators of the ξα are defined by

[ξα, ξβ] ≡ ξαξβ − ξβξα = Cδαβξδ, (3.1.2)

where the Cδαβ are called structure constants. These are antisymmetric, in the
sense that,

Cδαβ = −Cδβα. (3.1.3)

The components of the metric, gij , describing a Bianchi space are invariant under
the isometry generated by infinitesimal translations of the Killing vector fields.
In other words, the time-dependence of the metric is the same at all points. The
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Table 3.1 The Bianchi types shown in terms of the number of arbitrary constants needed
to specify the model on a given constant time surface in vacuum r and with a perfect
fluid s.

group
Bianchi dimension vacuum fluid
type p r s

I 0 1 2
II 3 2 5
VI0 5 3 7
VII0 6 4 8
VIII 6 4 8
IX 6 4 8
IV 5 3 7
V 3 1 5
VIh 6 4 8
VIIh 6 4 8

VIh=−1/9 6 4 7

Einstein equations relate the energy–momentum tensor Tij to the derivatives of
gij , so if the metric is invariant under a given set of operations, then so are the
physical properties encoded by Tij .
The set of n Killing vectors will have some n-dimensional group structure, say

Gn, that depends on the properties of the structure constants and this is used
to classify all spatially homogeneous cosmological models. The most useful form
of this classification proceeds as follows. On any particular spacelike hypersur-
face, the Killing vector basis can be chosen so that the structure constants can be
decomposed as

Cηαβ = εαβγnγη + δηβaα − δηαaβ, (3.1.4)

where εαβγ is the total antisymmetric tensor and δβα is the Kronecker delta. The
tensor nαβ is diagonal with entries, say, n1, n2, and n3. The vector aα = (a,0,0)
for some constant a. All the parameters a and nα can be normalised to be ±1 or
zero. If an2n3 = 0, then n2 and n3 can be set to ±1 and a is then conventionally
taken to be

√|h|, where h is a parameter used in the classification. The possible
combinations of n1 and a then fix the Bianchi types, which can also be described
in terms of the number of arbitrary functions needed to specify the solution in
vacuum (r ) or in the presence of a perfect fluid (s) as shown in Table 3.1. The ‘most
general’ anisotropic models are therefore those that have the largest number of
free functions, or free parameters on each hypersurface.
The Friedmann models form special cases of the Bianchi types. These have G6

symmetry groups with G3 subgroups. The flat Friedmann model is a special case
of either Bianchi I or Bianchi VII0, the open Friedmann model is a special case of
types V or VIIh and the closed model belongs to type IX.
General solutions of the Einstein equations are only known for some special

cases of the Bianchi types, which demonstrates the difficulty of findingmeaningful
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exact solutions in situations of restricted symmetry. There is, however, one very-
well-known example which is a useful illustration of the sort of behaviour one can
obtain. This solution, called the Kasner solution, belongs to Bianchi type I. The
metric in this case has a relatively simply form:

ds2 = c2 dt2 −X2
1(t)dx

2
1 −X2

2 dx
2
2 −X2

3 dx
2
3 . (3.1.5)

Substituting this metric into the Einstein Equations (1.2.20) (with Λ = 0 and a
perfect fluid with pressure p and density ρ) yields

Ẍi
Xi

−
(
Ẋi
Xi

)2
+ 3

(
Ẋi
Xi

)(
ȧ
a

)
= 4πG
c4

(
ρ − p

c2

)
, (3.1.6)

in which a3 = X1X2X3. Note that this emerges from the diagonal part of the Ein-
stein equations so the summation convention does not apply in Equation (3.1.6).
One also obtains

Ẋ1Ẋ2
X1X2

+ Ẋ2Ẋ3
X2X3

+ Ẋ3Ẋ1
X3X1

= 8πG
c4
ρ. (3.1.7)

This is easy to interpret: the spatial sections expand at a rate Ẋi/Xi in each direc-
tion. The mean rate of expansion is just

ȧ
a
= 1
3

(
Ẋ1
X1

+ Ẋ2
X2

+ Ẋ3
X3

)
. (3.1.8)

In the neighbourhood of an observer at the centre of a coordinate system xi, fluid
particles will move with some velocity ui. In general,

∂ui
∂xj

= 1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
+ 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
=ωij + θij, (3.1.9)

where ωij is the rate of rotation: in more familiar language, the vorticity vector
ωi = εijkωjk, which is just the curl of ui. The tensor θij can be decomposed into
a diagonal part and a trace-free part according to

θij = 1
3δijθ + σij, (3.1.10)

whereσii = 0. In this description θ,σij andωij , respectively, represent the expan-
sion, shear and rotation of a fluid element.
In the particular case of Bianchi I we have

θ = 3(ȧ/a) (3.1.11)

and

ωij = 0. (3.1.12)
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More complicated Bianchi models have non-zero rotation. We can further rewrite
Equation (3.1.6) in the form of evolution equations for

σi = ẊiXi −
ȧ
a
. (3.1.13)

In particular we get

σ̇i + θσi = 0, (3.1.14)

which can be immediately integrated to give

σi = Σia3 , (3.1.15)

where the Σi are constants such that Σ1 + Σ2 + Σ3 = 0. The Kasner solution itself
is for a vacuum p = ρ = 0, which has a particularly simple behaviour described
by Xi = Aitp, where p1 + p2 + p3 = p21 + p22 + p23 = 1. Notice that in general
these models possess a shear that decreases with time. They therefore tend to
behave more like a Friedmann model as time goes on. Their behaviour as t → 0
is, however, quite complicated and interesting.
There is one other particularly interesting case to mention before we leave this

discussion. The mix-master universe of Misner (1968) we mentioned in Chapter 1
is of Bianchi type IX.

3.1.2 Inhomogeneous models

Before the formulation of general relativity and the discovery of the Hubble expan-
sion, which is describable by the Friedmann models founded on Einstein’s the-
ory, most astronomers imagined the Universe to be infinite, eternal, static and
Euclidean. The distribution of matter within the Universe was likewise assumed
to be more or less homogeneous and static. It is worth mentioning at this point
that the discovery that galaxies were actually external and comparable in size with
the Milky Way was made only a few years or so before Hubble’s discovery of the
expansion of the Universe.
It is nevertheless noteworthy that, beginning in the last century, there were a

number of prominent supporters also of the hierarchical cosmology, according to
which the material contents of the Universe are distributed in a hierarchical man-
ner reminiscent of the modern concept of a fractal. In such a model, the mean
density of matter on a scale r varies with scale as ρ(r) ∝ r−γ , where γ is some
constant γ � 2. In this way the mean density of the Universe tends to zero on
larger and larger scales. On the other hand, the velocity induced by the hierarchi-
cal fluctuations varies with scale according to v2(r) = Gρ(r)r 2 ∝ r 2−γ � const.
The idea of a fractal Universe still has its adherents today, although the evidence
we have from the extreme isotropy of the cosmic microwave background sug-
gests that the Universe is homogeneous and isotropic on scales greater than a
few hundred Mpc.
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Given the considerable leap in complexity we were forced to take when we
dropped one of the two components of the Cosmological Principle, it will come as
no surprise that there are few inhomogeneous cosmological models available as
exact solutions of the Einstein equations. Moreover, those that do exist tend to be
cases of particular symmetry. One of the problems of identifying exact solutions
is illustrated by the following metric:

ds2 =
(
1+ ε

1+ c2t2
)2
c2 dt2 −

(
ε

1+ x2
)2
x2 −

(
ε

1+y2

)2
y2 −

(
ε

1+ z2
)2
z2,

(3.1.16)

where ε is a small parameter. This looks for all the world like it must describe a
small departure from Minkowski space, but it is not. In fact, it is exactly the same
as Minkowski space but using a very strange coordinate system.
A notable example of a meaningful exact solution is the Tolman–Bondi solution

(Tolman 1934; Bondi 1947) which is spherically symmetric. The metric in this case
can be written in the form

ds2 = c2 dt2 − exp[λ(r , t)]dr 2 − R2(r , t)dΩ2, (3.1.17)

in which dΩ represents the usual collection of angular terms. By working back-
wards, i.e. substituting the form of this metric back into the Einstein equations,
one can show quite easily that

exp[λ(r , t)] = (R′)2

f 2(r)
, (3.1.18)

in which the prime denotes derivative with respect to r and f is one of three
undetermined functions in the Tolman–Bondi models. Let us now use Ṙ(r , t) to
denote a partial derivative with respect to t. Again from the Einstein equations
we can obtain

2R̈R + R2 + 1− f 2 = 0. (3.1.19)

This can be integrated to give

Ṙ2(r , t) = f 2(r)− 1+ F(r)
2R(r , t)

, (3.1.20)

where F(r) is the second undetermined function. We leave it as an exercise to go
further and obtain the third free function.
The Tolman–Bondi solution has been used to understand the passage of pho-

tons through inhomogeneous matter distributions such as galaxy clusters, and
also to understand some of the possible observational consequences of the kind
of fractal inhomogeneity we discussed above (Ribeiro 1992).



The Steady-State Model 57

3.2 The Steady-State Model

The model of the steady-state universe is now primarily of historical interest. In
the past, however, from its original conception by Bondi, Gold and Hoyle in 1948
it was for many years a compelling rival to the Big Bang. Indeed it is ironic that
Hoyle, a bitter opponent of the Big Bang, was themanwho actually gave thatmodel
its name. He meant the term ‘Big Bang’ to be derogatory, but the term stuck.
The theory of the steady-state universe is based on the Perfect Cosmological

Principle, according to which the universe must appear identical (at least in some
average sense) when viewed from any point, in any direction and at any time. This
is clearly a stronger version of the usual Cosmological Principle, which applies to
spatial positions only. A particular consequence of this principle is that the Hubble
constant really has to be constant in time:

ȧ
a
= H(t) = const. = H0; (3.2.1)

from this relationship one can immediately deduce that the universe is expanding
exponentially:

a(t) = a0 exp[H0(t − t0)]. (3.2.2)

It is worth mentioning one immediate conundrum arising from this requirement.
Although, as we have seen, it is difficult to measure the Hubble parameter unam-
biguously, most observations do seem to suggest a value of H−1

0 , which is at least
within an order of magnitude of the ages of the oldest objects we can see. In a
steady-state universe this is a surprise. There is no reason a priori why the age
of the matter at a particular spatial location should bear any relation at all to the
value of H−1

0 . The steady-state universe was partly motivated by the fact that, in
the 1940s, the ‘best’ observational estimates of the Hubble constant were very
large: H0 � 300 km s−1 Mpc−1. With this value, the ages of the oldest stars are
much larger than H−1

0 , which is a powerful argument against the Big Bang. Mod-
ern estimates of H0 are much lower and have blunted most of the force of this
argument.
One can demonstrate, starting from the perfect Cosmological Principle, that

the curvature parameter K which appears in the Robertson–Walker metric must
be zero, and that the spatial sections in this model must therefore be flat. One
consequence of Equation (3.2.2) is that, if the Universe is to look the same to all
observers at all times, there must be a continuous creation of matter, in such a
way that the mean density of particles remains constant. This creation must take
place at a rate

3H0ρ0
mp

� 10−16h nucleons cm−3 year−1. (3.2.3)

It has never been clear exactly how this matter can be created, though it has been
suggested that creation events might be responsible for driving active galactic
nuclei. Hoyle’s idea was to postulate a modification of the Einstein equations to
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take account of the non-conservation of the energy–momentum tensor through
the famous ‘C-field’, via a term Cij

Rij − 1
2gijR + Cij = 8πG

c4
Tij ; (3.2.4)

substituting the Robertson–Walker metric appropriate for a steady-state model in
Equations (3.2.4) one obtains

Cij = −
(
8πG

p0
c2

+ 3H2
0

)
gij + 8πG

(
ρ0 + p

c2

)
UiUj. (3.2.5)

Hoyle suggested that Cij should be given by

Cij = C;i;j (3.2.6)

(as usual, the symbol ‘;’ stands for the covariant derivative), and the scalar field C
is given by

C = −8πG
H0

(
ρ0 + p0c2

)
t, (3.2.7)

with

ρ0 = 3H2
0

8πG
. (3.2.8)

The popularity of the steady-state universe took a nosedive with the discovery
of the 3 K cosmic background radiation by Penzias and Wilson (1965), which has
a natural explanation only within the framework of the hot Big Bang model. To
reconcile the presence of the microwave background radiation with the steady-
state theory it would be necessary to postulate the continuous creation not just
of matter, but also of photons. Such a hypothesis appears even more unnatural
than the creation of matter. An important development was also Sandage’s revi-
sion of the cosmological distance scale, which brought the ages of astronomical
objects into rough agreement with the Hubble timescale, H−1

0 . Until recently, the
last significant works in defence of the steady-state model were made by Hoyle
and Narlikar in the late 1960s. More recently, however, a variant of this model
called the ‘quasi-steady-state’ universe has been proposed. In this scenario, mat-
ter is created in chunks of cosmological scale, rather than individually in nucleons.
These elaborations remind one of the epicycles used in an attempt to rescue the
Earth-centred Solar System model; the steady-state model being advanced nowa-
days certainly shares none of the compelling simplicity of its predecessor.
Nevertheless, some ideas from the steady-state universe do live on in modern

cosmology. In particular, many aspects of the inflationary universe scenario, such
as the exponential expansion, are exactly the same as in the steady-state model.
However, in the former case, the driving force is not particle creation but rather
the vacuum energy of a scalar quantumfield with effective potential V(Φ) � const.
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3.3 The Dirac Theory

Dirac (1937, 1974) originated a novel approach to cosmology based on the consid-
eration of dimensionless numbers constructed from fundamental physical quan-
tities. For example, the dimensionless number

e2

Gmpme
� 0.23× 1040 (3.3.1)

represents the ratio of the Coulomb force and the gravitational force between an
electron and a proton;

�c
Gm2

p
� 1.5× 1038 (3.3.2)

is the ratio between the Compton wavelength and the Schwarzschild radius of a
proton;

cH−1
0

(e2/mec2)
� 3.7× 1040 (3.3.3)

is roughly the ratio between the cosmological horizon distance (sometimes some-
what inaccurately called the ‘radius of the Universe’) and the classical electron
radius. One must make a distinction between relations of the type (3.3.3) and
similar expressions, such as

1
mπ

(
�2H0

Gc

)1/3
� 1
me

(
e4H0

Gc3

)1/3
� 1 (3.3.4)

(mπ is the pion mass), which are between cosmological and microphysical quan-
tities, and other relations which exist between either two cosmological or two
microphysical quantities. For example,

ρ0m(cH−1
0 )3

mp
� 1080 = (1040)2 (3.3.5)

represents the number of baryons within the cosmological horizon;

ρ0mGH−2
0 � 1 (3.3.6)

expresses the near-flatness of the Universe; and

(
kBT0r

�c

)3mp

ρ0m
� 1010 = (1040)1/4 (3.3.7)

represents the ratio between the number densities of photons and baryons. Rela-
tions like (3.3.5)–(3.3.7) can be explained within the framework of an adequate
cosmological model such as the inflationary universe. The relations (3.3.1)–(3.3.4)
cannot be explained in thismanner, andmust be thought about in some other way.
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There seem to be two possibilities: either they are essentially numerical coinci-
dences, which occur because of some special property of the present epoch when
we happen to be observing the Universe; or they have some deep physical signif-
icance which is yet to be elucidated. Arguments of the first type were advanced
by Dicke in the 1960s, who explained that the present value of H−1

0 in the Big
Bang model must be constrained by the requirement that life must have had time
to evolve. This requires at least a main sequence stellar lifetime to have passed.
The horizon must therefore be large simply in order for us to have evolved, and
the number of baryons it contains must also be large. In the second type of argu-
ment a deeper explanation, based on fundamental physics, must be sought of the
relations such as Equations (3.3.5) to (3.3.7).
This second approach was adopted by Dirac in numerous writings between

1934 and 1974. His basic assumption was that the large dimensionless numbers
that keep appearing in relations between microphysical and cosmological scales
are connected by a simple relation in which the only dimensionless coefficients
that appear are of order unity. For example, let the first terms in Equations (3.3.1)
and (3.3.3) be R1 and R2, respectively, so that

R1
R2

= e4H0

Gmpm2
ec3

� 1. (3.3.8)

If Equation (3.3.8) is valid at any cosmological epoch, given that H0 varies, then
at least one of the relevant physical ‘constants’ – e, G,me,mp, c – must be time
dependent. Dirac proposed two alternatives: either the charge of the electron or
the constant of gravitation are variable. For simplicity, let us look at the second
of these possibilities. From Equation (3.3.8) we obtain

G(t)∝ H(t) = ȧ
a
, (3.3.9)

and from (3.3.6), putting ρm ∝ a−3, we get

G(t)a−3(t)∝ H2(t). (3.3.10)

One can eliminate G(t) from Equations (3.3.9) and (3.3.10) leading to

ȧ
a
∝ a−3, (3.3.11)

which, integrated, gives

a = a0
(
t
t0

)1/3
(3.3.12)

and, therefore,

G(t) = G0

(
t
t0

)−1
; (3.3.13)
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G0 is the present value of the ‘constant’ of universal gravitation and t0 is the age
of the Universe. We find that

t0 = 1
3H

−1
0 � 3.3× 109h−1 years, (3.3.14)

too small compared with the nuclear timescale for stellar evolution which does
not depend upon the assumption that G varies with time.
This result is bad news for the Dirac hypothesis. Nevertheless, Dirac’s idea has

inspired many attempts to construct theories of gravitation with a variable G. The
most complete and interesting example is the scalar–tensor theory of Brans and
Dicke (1961), which we describe in the next section. It is noteworthy, however,
that the large-number coincidences which were the inspiration for Dirac’s theory
either became of secondary importance or were completely neglected in these
alternatives. Nowadays it is generally accepted that the correct interpretation of
the large-number coincidences is that due to Dicke, and that they are essentially
consequences of the Weak Anthropic Principle which we shall discuss later, near
the end of Chapter 7.

3.4 Brans–Dicke Theory

The Einstein equations of general relativity can be obtained by applying a varia-
tional principle to a Lagrangian of the form

LGR = L+ c4

16πG
R, (3.4.1)

where R is the scalar curvature and L is the Lagrangian action corresponding to
the matter. In the Brans–Dicke theory, the appropriate gravitational Lagrangian is
instead assumed to be

LBD = L+ c4

16π
ϕR − c4

16π
ωgijϕ;iϕ;j

ϕ
, (3.4.2)

where ϕ is a scalar field andω is a dimensionless coupling constant. Comparing
Equation (3.4.2) with (3.4.1) shows that the inverse of the field ϕ plays the role of
the gravitational constant G. From (3.4.2) we can derive the relation

�ϕ ≡ gikϕ;i;k = 8π
(3+ 2ω)c4

Tii, (3.4.3)

where Tij is the energy–momentum tensor appropriate for L and, in the place of
the Einstein equations, we get

Rij − 1
2gijR = 8π

c4ϕ
Tij − ω

2

ϕ2
(ϕ;iϕ;j − gijϕ;kϕk; )−

1
ϕ
(ϕi;j − gij�ϕ), (3.4.4)
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which, after introducing the Robertson–Walker metric to get the cosmological
equations, give the following:

3
ä
a
= − 8π

(3+ 2ω)
1
ϕ

[
(2+ω)ρ + 3(1+ω) p

c2

]
−ω

(
ϕ̇
ϕ

)2
− ϕ̈
ϕ
, (3.4.5)

ρ̇ = −3ȧ
a

(
ρ + p

c2

)
, (3.4.6)

(
ȧ
a

)2
+ K
a2

= 8πρ
3ϕ

− ϕ̇
ϕ
ȧ
a
+ ω

6
ϕ̇2

ϕ2
, (3.4.7)

d
dt
(ϕ̇a3) = 8π

(3+ 2ω)

(
ρ − 3

p
c2

)
a3. (3.4.8)

One can also show that, in the framework of a Newtonian approximation, the
‘constant’ in Newton’s law of gravitation is

G = 2ω+ 4
2ω+ 3

1
ϕ
. (3.4.9)

The cosmological models which solve Equations (3.4.5)–(3.4.8) depend on the four
quantities a0, ȧ0,ϕ0 and ρ0, and the two parameters K (which takes the values 1,
0 or−1) andω > 0. Recall that the Friedmannmodels depend only on three initial
values and only one parameter K. The set of cosmological solutions to the Brans–
Dicke theory therefore forms a family of solutions which is much larger than
that of the Friedmann models. We shall not describe these solutions in any detail,
though it is perhapsworthmentioning that the homogeneous and isotropic Brans–
Dicke solutions also possess a singularity in the past. Just to give one example,
however, consider the flat Universe (K = 0). The present matter density is given
by

ρ0m = 3H2
0

8πG
(4+ 3ω)(4+ 2ω)

6(1+ω)2 , (3.4.10)

the age of the Universe by

t0H = 2(1+ω)
(4+ 3ω)

H−1
0 , (3.4.11)

and the deceleration parameter by

q0 = 1
2
ω+ 2
ω+ 1

; (3.4.12)

Equations (3.4.10)–(3.4.12) all become identical to the Einstein–de Sitter case for
ω→∞.
The mysterious relations (3.3.1)–(3.3.7) do not find an explanation in the frame-

work of this theory, which was not formulated with that intention. The situation
with respect to the observational implications of this theory is very complicated,
given the large set of allowed models. Cosmological considerations (such as the
age of the Universe, nucleosynthesis, etc.) do not place strong constraints on the



Variable Constants 63

Brans–Dicke theory. The most important tests of the validity of this theory are
those that involve the time-variation ofG. There are various relevant observations:
the orbital behaviour of Mercury and Venus; historical data about lunar eclipses;
properties of fossils; stellar evolution (particularly the Sun); deflection of light by
celestial bodies; the perihelion advance of Mercury. These observations together
do not rule out the Brans–Dicke theory, but a rough limit on the parameter ω is
obtained: ω > 500.
In recent years, interest in the Brans–Dicke theory as an alternative to general

relativity has greatly diminished, but there has been a great deal of recent work
on the behaviour of certain types of inflationary model which involve a scalar field
with essentially the same properties as the Brans–Dicke field ϕ; these are usually
called extended inflation models.

3.5 Variable Constants

One of the consequences of Brans–Dicke theory is that the Newtonian gravitational
constant changes with time. In recent years this general framework has given
rise to suggestions that other fundamental physical quantities may also not be
constant. For example, the fine-structure constant α, given in SI units as

α = e2

4πε0�c
, (3.5.1)

may change with time. The presence of e in this expression indicates that the
parameter α measures the strength of the electromagnetic interaction. To have
this strength change on a cosmological timescale we therefore need to introduce
into the Lagrangian a term involving the electromagnetic field. In general the elec-
tromagnetic field is described by a tensor of the form

Fµν = Aν,µ −Aµ,ν , (3.5.2)

where Aµ is the usual vector potential that appears in Maxwell’s equations. The
appropriate Lagrangian for electromagnetism can be seen to be

Lem = −1
4F
µνFµν. (3.5.3)

One way of building a model in which the coupling to electromagnetism changes
is then to use a Lagrangian containing an extra term that couples some scalar
field ψ to this in much the same way that the Brans–Dicke theory (3.4.2) couples
a scalar field to the metric in order to change the strength of gravity. A possibility
is to add a term like Lem exp(−2ψ). In this case the Einstein equations become

Gµν = 8πG
c4
[Tmµν + Tψµν + T emµν exp(−2ψ)] (3.5.4)

leading to changes in the cosmological equations and possible observational con-
sequences in absorption line systems (e.g. Sandvik et al . 2002).
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However, interpreting this change as a change of α alone is not the only pos-
sibility. It is possible to use this general idea also to motivate models in which
the speed of light c is also variable. The connection between variable c theories
and variable α theories lies in (3.5.1). For example, given a variable α theory it is
always possible to redefine units so that c and � are constant and e varies. It is
possible therefore to interpret the model described above as a variable c cosmol-
ogy in which ψ is just some function of c or vice versa. Somewhat surprisingly,
it is possible to make such a theory both covariant and Lorentz invariant (Moffat
1993; Magueijo 2000).

3.6 Hoyle–Narlikar (Conformal) Gravity

Another theory of gravitation that has given rise to interesting cosmological mod-
els was proposed by Hoyle and Narlikar in 1964; we shall hereafter call this the
HN theory. The important difference between HN theory and both general rel-
ativity and the Brans–Dicke theory mentioned above is that the latter are field
theories, while the former is based on the idea of direct interparticle action.
Mach’s Principle suggests the existence of action-at-a-distance by the follow-
ing argument. The mass of an object mi according to Mach’s Principle is not
entirely an intrinsic property of the object, but is due to the background pro-
vided by all the other objects in the Universe. Building on some ideas of Dirac
at representing electromagnetism in a similar way and exploiting the notion
of conformal invariance, Hoyle and Narlikar produced a theory of gravitation
which, when expressed in the language of field theory, is identical to general
relativity.
So what has been gained in this exercise? It seems that this theory provides

no new predictions. In fact there are a number of subtle and interesting ways in
which this theory differs from general relativity. First, while the Einstein equations
have valid solutions for an empty Universe, the HN equations in this case yield
an indeterminate solution for the metric gik. This makes sense in light of Mach’s
Principle: without a set of background masses against which to measure motion,
the concept of a trajectory is meaningless. Second, the sign of the gravitational
constant G is only fixed in general relativity by comparing its weak-field limit
with Newtonian gravity. There is no a priori reason intrinsic to general relativity
why G could not be negative. In HN theory, G is always positive. Likewise, there
is no space for the cosmological constant Λ in the field equations of HN theory.
Finally, we mention that in the HN cosmological solutions, redshift arises from
the variation of particle masses with time.
The HN theory is an interesting physically motivated alternative to Einstein’s

general relativity. While we assume throughout most of this book that GR is the
correct law of gravity on cosmological scales, we still feel it is important to stress
that there have been no compelling strong-field tests of Einstein’s theory. Alter-
natives like the HN theory have an important role to play in reminding us how
different cosmology could be if Einstein’s theory turned out to be wrong!
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Bibliographic Notes on Chapter 3

A wide-ranging review of alternatives to the Big Bang cosmology may be found in
Ellis (1987). In the early 1990s there was an interesting sequence of review articles
in Nature for and against the standard cosmology: see Arp et al . (1990) for the
discontents and the riposte by Peebles et al . (1991). A nice review of anisotropic
and inhomogeneous cosmologies is given by MacCallum (1993).

Problems

1. Prove that the largest possible group for a spatially homogeneous model is six
dimensional.

2. What is special about h = − 1
9 in the Bianchi classification?

3. Investigate the possible behaviour of the singularity as t → 0 in the Kasner solution.

4. Integrate Equation (3.1.8) to identify the third undetermined function in the
Tolman–Bondi model and discuss its physical interpretation.

5. Identify the coordinate transformation that turns (3.1.16) into theMinkowskimetric.

6. Is there an Olbers Paradox in the steady-state model?





4

Observational
Properties of
the Universe

4.1 Introduction

Our approach to cosmology so far has been almost entirely theoretical, apart
from reference to the observational motivation for the Cosmological Principle
which was essential in constructing the Friedmann models. We should now fill in
some details on what is known about the bulk properties of our Universe, and
how one makes measurements in cosmology. Before doing so, however, we take
this opportunity to remind the reader of some simple background material from
observational astronomy.

4.1.1 Units

The standard unit of distance in astronomy is the parsec, which is defined as the
distance at which the deflection of an object’s angular position on the sky in the
course of the Earth’s orbital motion is one second of arc. (Note that, during half
an orbit, the angular change is two arcseconds.) Alternatively and equivalently,
one parsec is the distance of an object at which the semi-major axis of the Earth’s
orbit around the Sun subtends an angle of one arcsecond at the object. It turns
out that

1 pc � 3.086× 1013 km � 3.26 light years, (4.1.1)
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where a light year is the distance travelled by light in a time of one year. A thou-
sand parsecs is called a kiloparsec (kpc) and amillion parsecs a megaparsec (Mpc).
The typical separation of stars in a galaxy like the Milky Way is of the order of a
parsec, while the typical separation of bright galaxies is of the order of an Mpc.
Themost useful unit for cosmology is therefore themegaparsec. One typically has
to use the Hubble law (1.4.6) to estimate extragalactic distances from velocities,
since distances are hard to measure directly. There has always been some uncer-
tainty in the value of the Hubble constant H0, with the result that cosmologists
usually still parametrise it in terms of a dimensionless number h, where

h = H0

100 km s−1 Mpc−1
. (4.1.2)

Using this notation, distances inferred from velocities have units h−1 Mpc. We
discuss the distance scale further in Section 4.2.
The usual unit of mass is the solar mass

1M� � 1.99× 1033 g, (4.1.3)

and for luminosity L we adopt the solar luminosity

1L� � 3.9× 1033 erg s−1. (4.1.4)

The absolute luminosity L of a source is simply the total energy emitted by the
source per unit time, while the apparent luminosity l is the energy received by
an observer per unit time per unit area from the source. The latter obviously
depends on the distance from the source to the observer. In place of L and l,
astronomers frequently use absolute magnitude M and apparent magnitude m.
These quantities were defined in Section 1.8, based on a logarithmic scale in which
five magnitudes correspond to a factor 100 in luminosity. In fact there are several
definitions of apparent magnitude (mU, mB, mV, mIR, etc.) because one often
cannot measure the total flux from a source, but only that part which lies within
some finite band of wavelengths to which a particular instrument is sensitive.
The above examples stand for ultraviolet, blue, visible and infrared, respectively,
and are all based on standard filters. The total apparent luminosity of a source,
integrated over all wavelengths, is called the bolometric luminosity. In all cases
the relationship between apparent magnitude and apparent luminosity is defined
in such a way that the apparent magnitudes are the same for stars of spectral
type A0V .
We shall also, from time to time, have need to use astronomical coordinate

systems to describe the location of various objects on the sky. Because we are
dealing exclusively with extragalactic objects, we prefer to use galactic coordi-
nates whenever possible. The galactic latitude b is the angle made by a source
and the galactic plane; an object in the galactic plane has b = 0 and an object
vertically above or below the plane has b = ±90◦; the northern galactic pole is
defined to be at b = +90◦ and this pole lies in the northern part of the sky as vis-
ible from Earth. Galactic longitude is measured anticlockwise with respect to the
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Figure 4.1 The Hubble ‘tuning fork’ classification of galaxies. The sequence from left to
right runs through various types of elliptical galaxies (E), then divides into two branches,
corresponding to ‘normal’ spirals (S0, Sa, Sb, Sc) and barred spirals (SB0, SBa, SBb, SBc).
Irregular galaxies are not shown.

galactic meridian, the plane passing through the centre of the galaxy, the Earth
and the north and south galactic poles. Standard books on spherical trigonometry
explain how to convert l and b coordinates into the usual right ascension α and
declination δ.

4.1.2 Galaxies

Observational cosmology is concerned with the distribution of matter on scales
much larger than that of individual stars, or even individual galaxies. For many
purposes, therefore, we can regard the basic building block of cosmology to be
the galaxy. Much of this book is concerned with the problem of understand-
ing galaxy formation and we shall defer a detailed study of galaxies and the
way they are distributed until Part 4, where we confront the theories we have
described with the observed facts. It is worth, however, describing some of the
basic properties of galaxies to give an idea of the richness of structure one can
observe.
Galaxies come in three basic types: spirals, ellipticals and irregular. Hubble pro-

posed a morphological classification, or taxonomy, for galaxies in which he envis-
aged these three types as forming a kind of evolutionary sequence. Although it
is now not thought that this evolutionary sequence is correct, Hubble’s nomen-
clature, in which ellipticals are ‘early’ type and spirals and irregulars ‘late’, is still
commonly used. Figure 4.1 shows Hubble’s classification scheme. The elliptical
galaxies (E), which account for only around 10% of observed bright galaxies, are
elliptical in shape and have no discernible spiral structure. They are usually red
in colour, have very little dust and show no sign of active star formation. The
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luminosity profile of an elliptical galaxy is of the form

I(r) = I0
(
1+ r

R

)−2
, (4.1.5)

where I0 and R are constants and r is the distance from the centre. The scale
length R is typically around 1 kpc. The classification of elliptical galaxies into En
depends on the ratio of major to minor axes of the ellipse: the integer n is defined
by n � 10(1 − b/a), where a and b are the major and minor axes, respectively.
Ellipticals show no significant rotational motions and their shape is thought to be
sustained by the anisotropic ‘thermal’ motions of the stars within them. Ellipticals
occur preferentially in dense regions, i.e. inside clusters of galaxies.
Spiral galaxies account for more than half the galaxies observed out to 100 Mpc

and brighter thanm = 14.5. Hubble’s division into normal (S) and barred (SB) spi-
rals depends on whether the prominent spiral arms emerge directly from the
nucleus, or originate at the ends of a luminous bar projecting symmetrically
through the nucleus. Spirals often contain copious amounts of dust, and the spi-
ral arms in particular show evidence of ongoing star formation (i.e. lots of young
supergiant stars), giving the arms a blue colour. The nucleus of a spiral galaxy
resembles an elliptical galaxy in morphology, luminosity profile and colour. Many
spirals also demonstrate some kind of ‘activity’ (non-thermal emission processes).
The intensity profile of spiral galaxies (outside the nucleus) does not follow Equa-
tion (4.1.4) but can instead be fitted by an exponential form:

I(r) = I0 exp(−r/R). (4.1.6)

The subdivision of S and SB into a, b or c depends on how tightly the spiral arms are
wound up. Spirals show ordered rotational motion which can be used to estimate
their masses (see Section 4.5).
Lenticular, or S0, galaxies were added later by Hubble to bridge the gap between

normal spirals and ellipticals. Around 20% of galaxies we see have this morphol-
ogy. They are more elongated than elliptical galaxies but have neither bars nor
spiral structure. Irregular galaxies have no apparent structure and no rotational
symmetry. They are relatively rare, are often faint and small and are consequently
very hard to see. The distribution of masses of elliptical galaxies is very broad,
extending from 105 to 1012M�, which includes the mass scale of globular star
clusters. Small elliptical galaxies appear to be very common: for example, 7 out
of 17 galaxies in the Local Group are of this type. Spiral galaxies have a smaller
spread in masses, with a typical mass of 1011M�.

4.1.3 Active galaxies and quasars

Many galaxies, especially spirals, show various types of activity, characterised by
non-thermal emission at a wide range of wavelengths from radio to X-ray. A full
classification of all the different types of active galaxy is outside the scope of this
book, let alone any attempt to explain the bewildering variety of properties they
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Figure 4.2 The ‘Whirlpool’ Galaxy M51, a fine example of a face-on spiral galaxy. Picture
courtesy of the National Optical Astronomy Observatory/Association of Universities for
Research in Astronomy/National Science Foundation.

possess. One possible explanation is that they are all basically the same kind of
‘animal’, but we happen to be observing them at different angles and therefore we
see radiation from different regions within them. We shall not discuss this idea in
detail, however, but merely restrict ourselves to listing the main types. The usual
abbreviation for all these phenomena is AGN (active galactic nucleus).

Seyfert galaxies are usually spiral galaxies. They have very little radio emission
and no sign of any jets. Seyferts display a strong continuum radiation all the
way from the infrared to X-ray parts of the spectrum. They also have emission
lines, which may be variable.

Radio galaxies are usually ellipticals. They typically possess two lobes of radio
emission and sometimes have a compact core; often they show signs of some
kind of ‘jet’. The nucleus of these sources tends to have spectral properties
similar to Seyfert galaxies.

BL Lac objects have no emission lines, but a strong smooth continuum from
radio to X-ray wavelengths. They show dramatic and extremely rapid variability.
It is thought that these objects might be explained as the result of looking at a
relativistic jet end-on. Relativistic effects might shorten the apparent variability
timescale, and the emission lines might be swamped by the jet.
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Figure 4.3 The quasar 3C273, seen in optical light, showing a jet of radiating material.
Photograph courtesy of the National Optical Astronomy Observatory/Association of Uni-
versities for Research in Astronomy/National Science Foundation.

Quasars are point-like objects and are typically at high redshifts. Indeed the cur-
rent record holder has z ∼ 6! They are phenomenally luminous at all frequen-
cies. Moreover, they are variable on a timescale of a few hours: this shows that
much of their radiant energy must be emitted from within a region smaller than
a few light hours across. Such is the energy they emit from a small region that it
is thought they might be powered by accretion onto a central black hole. Most
quasars are radio-quiet, but some are radio-loud. Long exposures sometimes
reveal structure in the form of a jet.

A somewhatmilder form of activity is displayed by the starburst galaxies, which,
as their name suggests, are galaxies undergoing a strong burst of star formation
which may be triggered by the interaction of the galaxy with a neighbour.

4.1.4 Galaxy clustering

All self-gravitating systems tend to form clumps, or density concentrations, so
one should not be surprised to find that galaxies are not sprinkled randomly
throughout space but are clustered. As we shall see in Chapter 16, the way galaxies
cluster is approximately hierarchical: many galaxies occur in pairs or small groups
which in turn are often clustered into larger associations. Just how large a scale
this hierarchy reaches is an important test of theories of structure formation, as
we shall see.
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Figure 4.4 The Coma cluster of galaxies observed in optical light. Only the central regions
are shown; the cluster containsmore than a thousand galaxies, most of which are elliptical.
Picture courtesy of the National Optical Astronomy Observatory/Association of Universi-
ties for Research in Astronomy/National Science Foundation.

Our galaxy, the Milky Way, is a member of a group of around 20 galaxies (most
of them small) called the Local Group, which also includes the Andromeda spiral
M31, and is altogether a few Mpc across. The nearest galaxies to us, the Large and
Small Magellanic Clouds, are members of this group. Further away, at a distance
of about 10h−1 Mpc, lies a prominent cluster of galaxies called the Virgo cluster
which is pulling the Local Group towards itself. There are several prominent clus-
ters within 100h−1 Mpc of the Local Group, the most impressive being the Coma
cluster which lies about 60h−1 Mpc away and which contains literally thousands
of galaxies. One should stress, however, that it is probably not helpful to think
of clusters as discrete entities: all galaxies are clustered to some extent, but most
of them reside in small groups with a low density contrast. When one looks at
objects like Coma, one is seeing the upper extreme of the distribution of cluster
sizes.
Nevertheless, an important part of the analysis of galaxy clustering is played

by the study of the richest clusters. George Abell catalogued the most promi-
nent clusters according to their apparent richness and estimated distance in
the 1950s. The manner in which he did this was somewhat subjective and, as
we shall discuss in Chapter 16, the methods he used to identify ‘Abell’ clus-
ters may have introduced some systematic errors. Nevertheless, his catalogue
is still used today for studies of large-scale structure. Rich clusters of galaxies
also have other uses. These objects are so dense that they are probably gravi-
tationally fully collapsed systems and one can therefore use statistical mechan-
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Figure 4.5 The Lick map showing a region of the northern galactic sky. A strong visual
impression of ‘bubbly’ and/or ‘filamentary’ pattern is revealed. Picture courtesy of Ed
Groth.

ics to estimate their mass (see Section 4.5). Moreover, they are also very bright
in the X-ray part of the spectrum because they contain large amounts of hot,
ionised gas. X-ray observations can therefore be used to measure the relative con-
tributions to the total cluster mass of individual galaxies and hot gas, as well
as any unseen component of dark matter. Maps of the general pattern of clus-
tering on the sky require systematic surveys of galaxies with some well-defined
selection criterion (usually a strict apparent magnitude limit). Usually such sur-
veys avoid regions of the sky close to the galactic plane, say with galactic lat-
itude b < 20◦, because of the observational difficulties posed by interstellar
dust within our Galaxy. The first survey of galaxy positions was due to Shap-
ley and Ames (1932) which catalogued 1250 galaxies with m < 13. This was the
first strong indicator of galaxy clustering. Later, Zwicky accumulated a sample
of 5000 galaxies with m < 15 using the Palomar Sky Survey. Enormous strides
were then taken by Shane and Wirtanen (1967), who created the famous Lick
map of galaxies. This shows around a million galaxies with m < 19 and cov-
ers most of the sky. Figure 4.5 shows clear evidence of clustering in the form
of filamentary patterns, large clusters and regions of very low density. The Lick
map was compiled using relatively primitive eyeball techniques. More recent sur-
veys using automatic plate-measuring machines, such as the APM and COSMOS,
have made the acquisition of large quantities of data rather less problematic.
The APM catalogue, for example, contains about two million galaxies (Maddox et
al . 1990). Important though these sky surveys are, because of the sheer num-
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ber of galaxies they contain, they do not reveal directly the positions of galax-
ies in three-dimensional space, but only in two-dimensional projection on the
sky. No distance information is present in sky catalogues, except in the statis-
tical sense that the fainter galaxies will, on average, be further away than the
bright ones. The third dimension can at least be estimated by using the galaxy
redshift z. This, however, requires not just an image of the galaxy but a spec-
trum. Systematic surveys of the redshifts of galaxies identified on sky survey
plates more or less began in the 1980s with the Harvard–Smithsonian Center
for Astrophysics (CfA) survey, which used the Zwicky catalogue as its ‘parent’
(de Lapparent et al . 1986). This resulted in maps of the redshifts of several
thousand galaxies in various ‘slices’ on the sky. Improvements in instrumenta-
tion technology have led to a revolution in the field of ‘cosmography’, i.e. map-
ping the distribution of galaxies in our Universe. For example, a large-scale map
of the galaxy distribution was obtained by the QDOT (Queen Mary, Durham,
Oxford and Toronto) team using not optical galaxies, but galaxies detected by
the IRAS satellite through their infrared radiation. The survey was subsequently
expanded by a factor of six and, now complete, contains more than 10000 galax-
ies. As far as optical surveys are concerned the great step forward has been the
advent of multi-fibre spectroscopic devices on wide-field telescopes, enabling red-
shifts to be obtain of several hundred galaxies in a single pointing of a tele-
scope. The first large survey of this type, the Las Campanas Redshift Survey,
contained about 25000 galaxies; the catalogue was published in 1996. A sur-
vey of around a quarter of a million galaxies, using the APM survey as its par-
ent and exploiting the ‘two-degree field’ (2dF) on the Anglo-Australian telescope,
is nearing completion by a British–Australian consortium. While in the USA the
Sloan Digital Sky Survey aims eventually to measure a million galaxy redshifts.
The picture that emerges is a fascinating one. The galaxy distribution is charac-
terised by filaments, sheets and clusters. Clusters are themselves grouped into
superclusters, such as the Virgo supercluster and the so-called Shapley concen-
tration. In between these structures there are large regions almost devoid of
galaxies. These are usually called voids. There are two important tasks for mod-
ern cosmology, connected with the way in which galaxies and clusters are dis-
tributed throughout space. The first is to quantify, using appropriate statistical
tools, the level of present clustering. The second is then to explain this clus-
tering using a theory for the evolution of structure within expanding universe
models. Part 3 of this book will be devoted to the standard theory for struc-
ture formation and Part 4 to the various constraints placed on these theories
by detailed statistical analysis of galaxy clustering and other cosmological obser-
vations.

4.2 The Hubble Constant

As we have explained, the Hubble law is implicit in the requirement that the
Universe is homogeneous and isotropic. There is therefore a strong theoretical
motivation for it stemming from the Cosmological Principle. In fact, the Hubble
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Figure 4.6 The Las Campanas Redshift Survey. Picture courtesy of Bob Kirschner.
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expansion was first discovered observationally by Slipher but he did not make the
bold interpretation of his data that Hubble did. After many years of painstaking
observations, Hubble (1929) formulated his law in the form that galaxies seem to
be receding with a velocity v proportional to their distance d from the observer:

v = H0d. (4.2.1)

This relation is called the Hubble law and the constant of proportionality H0

is called the Hubble constant. The numerical value of H0 is most conveniently
expressed in units of km s−1 for the velocity and Mpc for the distance, i.e. in
km s−1 Mpc−1. As we have mentioned before, and shall discuss in much detail
soon, H0 is very difficult to measure accurately. Until recently there was an uncer-
tainty of about a factor of two in H0. Given the scale of the possible error, it is
useful to introduce the dimensionless parameter h defined in (4.1.2).
We should now make some comments about the limits of the validity of Equa-

tion (4.2.1). For a start, the distance dmust be sufficiently large that the recession
velocity deduced from (4.2.1) is much larger than the radial component of the
peculiar velocities. This can be up to 1000 km s−1 for galaxies inside clusters;
this places the requirement that d� 10h−1 Mpc. In terms of redshift this means
that z� 10−2. On the other hand, the distance should not be so large that Equa-
tion (4.2.1) implies a recession velocity greater than the velocity of light. In fact
Equation (4.2.1) is true if d is the proper distance of the galaxy, but we cannot
measure this directly and one has to use measures such as the luminosity dis-
tance for which Equation (4.2.1) is no longer valid. Roughly speaking one should
therefore only use this equation for d  300h−1 Mpc (or z  10−1). From Sec-
tion 1.5 it can be shown that the distance d of a galaxy with redshift in the range
10−2 � z � 10−1 is given, to a good approximation, by

d � c
H0
z � 3000h−1z Mpc. (4.2.2)

This equation should be thought of as the first approximation to the formula for
the luminosity distance as a function of redshift for Friedmann models:

dL = c
H0

1

q20
{q0z + (q0 − 1)[−1+ (2q0z + 1)1/2]} � c

H0
[z + 1

2(1− q0)z2], (4.2.3)

which one can prove quite easily starting from Equation (1.7.3) (see also Equa-
tion (2.4.15)).
As we have mentioned, Equation (4.2.1) can be derived from the assumption

that the Universe is homogeneous and isotropic, i.e. that the Cosmological Prin-
ciple applies. All the relations one can use to demonstrate this property from
an observational point of view, such as the m–z (magnitude–redshift) and N–z
relations, obviously contain the parameter H0 explicitly.
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Figure 4.7 The Hubble diagram showing the correlation between redshift (y-axis) and
a distance indicator based on the first-ranked cluster elliptical (x-axis). Hubble’s original
dataset occupied the small black region in the bottom left-hand corner of the plot. Adapted
from Sandage (1972).

As we have seen, H0 is the first of the important parameters one needs to know
in order to construct a useful cosmologicalmodel. Knowledge of it would establish
three quantities:

1. the distance scale of the present cosmological horizon

l0H � c
H0

� 3000h−1 Mpc; (4.2.4)

2. the characteristic timescale for the expansion of the Universe

t0H � 1
H0

� 0.98× 1010h−1 years � 3× 1017h−1 s; (4.2.5)

and

3. the density scale required to close the universe

ρ0c = 3H2
0

8πG
� 1.9× 10−29h2 g cm−3, (4.2.6)

where ρ0c is the present value of the critical density.

The significance of these quantities was explained in Chapter 2.
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4.3 The Distance Ladder

The value of H0 found by Hubble in 1929 was around 500 km s−1 Mpc−1, much
larger than the values currently accepted. This discrepancy was due to errors
in the calibration of distance indicators that he used, which were only cor-
rected many years later. In the 1950s, Baade derived a value of H0 of order
250 km s−1 Mpc−1, but this was also affected by a calibration error. A later
recalibration by Sandage in 1958 brought the value down to between 50 and
100 km s−1 Mpc−1; present observational estimates still lie in this range. This
demonstrates the truth of the comment we made above: Hubble’s ‘constant’ is
not actually constant because it has changed by a factor of 10 in only 50 years!
Joking apart, the term ‘constant’ was never intended to mean constant in time,
but constant in the direction in which one observes the recession of a galaxy. As
far as time is concerned, the Hubble constant changes in a period of order H−1.
One simple way to estimate the Hubble constant is to determine the absolute

luminosity of a distant source and to measure its apparent luminosity l. From
these two quantities one can calculate its luminosity distance

dL =
(
L

4πl

)1/2
, (4.3.1)

which, together with the redshift z which one can measure via spectroscopic
observations of the source, provides an estimate of the Hubble constant through
Equation (4.2.3) (in the appropriate interval of z). The main difficulty with this
approach is to determine L. The usual approach, which is the same as that devel-
oped by Hubble, is to construct a sort of distance ladder : relative distance mea-
sures are used to establish each ‘rung’ of the ladder and calibrating these mea-
sures against each other allows one to measure distances up to the top of the
ladder. A modern analysis might use several rungs, based on different distance
measures, in the following manner.
First, one exploits local kinematic distance measures to establish the length

scale within the galaxy. Kinematic methods do not rely upon knowledge of the
absolute luminosity of a source. Nearby distances can be derived using the trigono-
metric parallax Q of a star, i.e. the change in angular position of a star on the sky
in the course of a year due to the Earth’s motion in space. MeasuringQ in arcsec-
onds is convenient here because the distance in parsecs is then just d =Q−1, as
we mentioned in Section 4.1. Until recently this direct technique was limited to
distances of order 30 pc or so, but the astrometric satellite Hipparcos has estab-
lished a distance scale based on parallax to kiloparsec scales.
The secular parallax of nearby stars is due to the motion of the Sun with respect

to them. For stellar binaries one can derive distances using the dynamical parallax,
based on measurements of the angular size of the semi-major axis of the orbital
ellipse, and other orbital elements of the binary system. Another method is based
on the properties of a moving cluster of stars. Such a cluster is a group of stars
which move across the Galaxy with the same speed and parallel trajectories; a
perspective effect makes these stars appear to converge to a point on the sky. The
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position of this point and the proper motion of the stars lead one to the distance.
This method can be used on scales up to a few hundred parsecs; the Hyades
cluster is a good example of a suitable cluster. With the method of statistical
parallax one can derive distances of order 500 pc or so; this technique is based
on the statistical analysis of the proper motions and radial velocities of a group
of stars. Taken together, such kinematic methods allow us to establish distances
up to the scale of a few hundred parsecs, much smaller even than the scale of our
Galaxy.
Once one has determined the distances of nearby stars with a kinematicmethod,

one can then calculate their absolute luminosities from their apparent luminosi-
ties and their (known) distances. In this way it was learned that most stars, the
so-called main sequence stars, follow a strict relationship between spectral type
(an indicator of surface temperature) and absolute luminosity: this is usually visu-
alised in the form of the HR (Hertzsprung–Russell) diagram. Using the properties
of this diagram one can measure the distances of main sequence stars of known
apparent luminosity and spectral type. With this method, one can measure dis-
tances up to around 30 kpc.
Another important class of distance indicators contains variables stars of vari-

ous kinds, including RR Lyrae and Classical Cepheids. The RR Lyrae all have a simi-
lar (mean) absolute luminosity; a simple measurement of the apparent luminosity
suffices to provide a distance estimate for this type of star. These stars are typi-
cally rather bright, so this can extend the distance ladder to around 300 kpc. The
classical Cepheids are also bright variable stars which have a very tight relation-
ship between the period of variation P and their absolute luminosity: log P ∝ logL.
The measurement of P for a distant Cepheid thus allows one to estimate its dis-
tance. These stars are so bright that they can be seen in galaxies outside our own
and they extend the distance scale to around 4 Mpc. Errors in the Cepheid distance
scale, due to interstellar absorption, galactic rotation and, above all, a confusion
between Cepheids and another type of variable star, called W Virginis variables,
were responsible for Hubble’s large original value for H0. Other distance indica-
tors based on novae, blue supergiants and red supergiants allow the ladder to
be extended slightly to around 10 Mpc. Collectively, these methods are given the
name primary distance indicators.
The secondary distance indicators include HII regions (large clouds of ionised

hydrogen surrounding very hot stars) and globular clusters (clusters of around
105–107 stars). The former of these has a diameter, and the latter an absolute
luminosity, which has a small scatter around the mean. With such indicators one
can extend the distance ladder out to about 100 Mpc.
The tertiary distance indicators include brightest cluster galaxies and super-

novae. Clusters of galaxies can contain up to about a thousand galaxies. One
finds that the brightest galaxy in a rich cluster has a small dispersion around
the mean value (various authors have also used the third, fifth or tenth brightest
cluster galaxy as a distance indicator). With the brightest galaxies one can reach
distances of several hundred Mpc. Supernovae are stars that explode, producing
a luminosity roughly equal to that of an entire galaxy. These stars are therefore
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easily seen in distant galaxies, but the various indicators that use them are not
too precise.
More recently, much attention has been paid to observed correlations of intrin-

sic properties of galaxies themselves as distance indicators. In spiral galaxies, one
can use the empirical Tully–Fisher relationship:

L∝ Vαc , (4.3.2)

where L is the absolute luminosity of the galaxy and Vc is the circular rotation
velocity (most massive spirals have rotation curves which are constant with radial
distance from the centre). The index α ∼ 3, but depends on the waveband within
which L is measured. The correlation is so tight that the measurement of Vc allows
the luminosity to be determined to an accuracy of about 40%. Since the apparent
flux can bemeasured accurately, and this depends on the square of the distance to
the galaxy, the resulting distance error is about 20%. This can be reduced further
by applying the method to a number of spirals in the same cluster.
The situation is somewhat more complicated for elliptical galaxies because the

correlation involves three parameters: the characteristic size of the galaxy R; its
surface brightness Σ; and the central velocity dispersion σ . (Recall that elliptical
galaxies do not have ordered motions, but random ones characterised by a dis-
persion rather than a mean value.) These three parameters are correlated in such
a way that they occupy the so-called fundamental plane defined by a relation of
the form

logR = A logσ − B logΣ + C, (4.3.3)

where C is a constant. Before the fundamental plane was established there were
attempts to find relations of the form (4.3.2), such as the Faber–Jackson relation,

L∝ σα, (4.3.4)

and the Dn–σ relation

Dn ∝ σ 1.2, (4.3.5)

where Dn is the radius within which the mean surface brightness of the galaxy
image exceeds a certain threshold value. The problem with these two-parameter
correlations is that they suppress one variable in the relation (4.3.3). The Faber–
Jackson relation does not take account of varying Σ and consequently has a large
scatter. On the other hand, the relation (4.3.5) is close to an edge-on view of the
fundamental plane and is almost as good as (4.3.2). The value of α needed to fit
the objections in this case is α ∼ 4. The use of these distance measures, together
with redshift, to map the local peculiar velocity field is described in Section 4.6
and in Chapter 18.
So there seems to be no shortage of techniques for measuring H0. Why is it

then that observational limits constrain H0 so poorly, as in Equation (4.2.2)? One
problem is that a small error in one ‘rung’ of the distance ladder also affects
higher levels of the ladder in a cumulative way. At each level there are actually
many corrections to be made, some of them well known, others not. Some such
corrections are as follows.



82 Observational Properties of the Universe

Galactic rotation: the Sun rotates around the galactic centre at a distance of
around 10 kpc and with a velocity around 215 km s−1. This motion can produce
spurious systematic shifts towards the red or the violet in observed spectra.

Aperture effects: it is necessary to refer all the measurements regarding galax-
ies to a standard telescope aperture. At different distances the aperture may
include different fractions of the galaxy.

K-correction: the redshift distorts the observed spectrum of a source in the sense
that the luminosity observed at a certain frequency was actually emitted at a
higher frequency. To correct this, one needs to know the true spectrum of the
source.

Absorption: our Galaxy absorbs a certain fraction of the light coming to it from
an extragalactic source. In fact the intensity of light received at the Earth varies
as exp(−λ cosecb), where λ is a positive constant and b is the angle between
the line of sight and the galactic plane, i.e. the galactic latitude.

Malmquist bias: there are various versions of this effect, which is basically due
to the fact that the properties of samples of astronomical objects limited by
apparent luminosity (i.e. containing all the sources brighter than a certain appar-
ent flux limit) are different from the properties of samples limited in distance
because the objects in distant regions will have to be systematically brighter in
order to get into the sample.

Scott effect: there is a correlation between the luminosity of the brightest galaxy
in a cluster and the richness (i.e. number of galaxies) of the cluster. At large
distances one tends to see only the richest clusters, which biases the brightest
galaxy statistics.

Baunt–Morgan effect: in fact, clusters are divided into at least five classes in each
of which the luminosity of the brightest galaxy is different from the others.

Shear: there is an apparent rotation in the Local Supercluster, as well as of the
Local Group and the Virgo cluster.

Galactic evolution: the luminosity of the most luminous cluster galaxies is a
function of time and, therefore, of the distance between the galaxy and us. The
main reason for this is that the stellar populations of such galaxies are modified
as the central cluster galaxy swallows smaller galaxies in its vicinity in a sort of
‘cannibalism’.

Given this large number of uncertain corrections, it is perhaps not surprising
that we are not yet in a position to determine H0 with any great precision. We
should mention at this point, however, that some methods have recently been
proposed to determine the distance scale directly, without the need for a ladder.
One of them is the Sunyaev–Zel’dovich effect, which we discuss in Section 17.7.
The Hubble Space Telescope (HST) is able to image stars directly in galaxies within
the Virgo cluster of galaxies, an ability which bypasses the main sources of uncer-
tainty in the calibration of the traditional distance ladder approaches. This ‘key’
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project is now more-or-less complete, and has produced a value of h � 0.7 with
an error of about 10%.

4.4 The Age of the Universe

We now turn to the determination of the characteristic timescale for the evolu-
tion of the Universe with the ultimate aim of determining t0, the time elapsed
from the Big Bang until now. The quantity we call the Hubble time is defined in
Section 2.7, and is simply the reciprocal of the Hubble constant. It is interesting
to note – we shall demonstrate this later – that this timescale is in rough order-
of-magnitude agreement with the ages of stars and galaxies and of the nuclear
timescale obtained from the radioactive decay of long-lived isotopes.

4.4.1 Theory

In a matter-dominated Friedmann model, the age of the Universe is given to a
good approximation by

t0 = F(Ω0)H−1
0 � 0.98× 1010F(Ω0)h−1 years, (4.4.1)

where, as a reminder, the density parameter Ω0 is the ratio between the present
total density of the Universe ρ0 and the critical density for closure ρ0c,

Ω0 = ρ0
ρ0c

= 8πGρ0
3H2

0

, (4.4.2)

and the function F(Ω0) is given by

F(Ω0) = Ω0

2
(Ω0 − 1)−3/2 cos−1

(
2
Ω0

− 1
)
− (Ω0 − 1)−1, (4.4.3a)

F(Ω0) = 2
3 , (4.4.3b)

F(Ω0) = (1−Ω0)−1 − Ω0

2
(1−Ω0)−3/2 cosh−1

(
2
Ω0

− 1
)
, (4.4.3 c)

in the casesΩ0 > 1,Ω0 = 1 andΩ0 < 1. These results can be compared with Equa-
tions (2.4.10), (2.2.6 e) and (2.4.3), respectively. The results (4.4.3a) and (4.4.3 c)
are well approximated by the relations

F(Ω0) � 1
2πΩ

−1/2
0 for Ω0 � 1, (4.4.4a)

F(Ω0) � 1+Ω0 lnΩ0 for Ω0  1. (4.4.4b)

Some illustrative values are F = 1, 0.90, 0.67, 0.5 and 0 for Ω0 = 0, 0.1, 1, 10 and
∞, respectively; for values ofΩ0 which are reasonably in accord with observations,
as we shall discuss shortly, the age is always of order 1/H0.
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As we shall see in the next section, the density parameter Ω0 is also extremely
uncertain. A (conservative) interval for Ω0 is

0.01 < Ω0 < 2, (4.4.5)

from which the Equations (4.4.1) and (4.4.3) give

t0H � (6.5–10)× 109h−1 years. (4.4.6)

The age of the Universe as deduced from stellar ages (see below) is probably in
the range 1.4–1.6×1010 years. This result places severe constraints on the Hubble
constant through Equation (4.4.1): universes withΩ0 � 1 are only compatible with
these age estimates if h � 0.5 or less, a value which is already at the bottom of
the allowed range of estimates. This problem is less severe if Ω0 � 0.1; in this
case we need an h � 0.6–0.8. Note, however, that in models with a cosmological
constant term Λ, the universe can be accelerating so that F(Ω0, Λ) > 1 in some
cases.

4.4.2 Stellar and galactic ages

The age of a stellar population can be deduced from various relationships between
their observed properties and the predictions of models of stellar evolution. In
this field, one pays great attention to stars belonging to globular clusters because
of the good evidence that the stars in a given globular cluster all have the same age
and differ only in their masses. Lessmassive stars evolve very slowly and look very
much as they did at the moment of their ‘birth’ (when hydrogen burning began in
their cores). These stars are situated predominantly on the main sequence in the
HR diagram. On the other hand, the most massive stars evolve very rapidly and, at
a certain point, leave the main sequence and move towards the region of the HR
diagram occupied by red giants; the time when they do this is called the ‘turnoff’
point and it is a function of the mass of the star. The age of the cluster tc is taken
to be the age of those stars that have just left the main sequence for the red-
giant branch. Estimates of such ages are prone to an error of about 10% because
the red-giant phase of stellar evolution lasts around 10% of the main sequence
lifetime. The theory of stellar evolution applied to this problem generally gives a
value of around 1.3–1.4×1010 years for the age of globular clusters, though much
higher ages have appeared in the literature. Given that the time for the formation
of galaxies is probably in the range 1–2×109 years, one should conclude that the
age of the Universe is probably around

t0 � 1.4–1.6× 1010 years. (4.4.7)

4.4.3 Nucleocosmochronology

The term ‘nucleocosmochronology’ is given to attempts to estimate the age of the
Universe by means of the relative abundances of long-lived radioactive nuclei and
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their decay products. Most long-lived radioactive nuclei are synthesised in the so-
called r -process reactions involving the rapid absorption of neutrons by heavy
nuclei such as iron. Such processes are generally thought to occur in supernovae
explosions. Given that the stars that become supernovae are very short lived (of
order 107 years), nucleocosmochronology is a good way to determine the time at
which stars and galaxies were formed. If the origin of our Galaxy was at t � 0,
at which time there occurred an era of nucleosynthesis of heavy elements lasting
for some time T , and this was followed by a time ∆ in which the Solar System
became isolated from the rest of the galaxy, and after which there was a period
ts corresponding to the age of the Solar System, then the age estimate of the
Universe one would produce is tn = T +∆+ ts.
The age of the Solar System can be deduced in the following way. The isotope

235U decays into 207Pb with a mean lifetime τ235 = 109 years; 238U produces 206Pb
with τ238 = 6.3 × 109 years; the isotope 204Pb does not have radioactive progen-
itors. Let us indicate the abundances of each of these elements by their atomic
symbols and the suffices ‘i’ and ‘0’ to denote the initial and present time, respec-
tively. We have

235Ui + 207Pbi = 235U0 + 207Pb0 = 235U0 exp
(
ts
τ235

)
+ 207Pbi, (4.4.8)

238Ui + 206Pbi = 238U0 + 206Pb0 = 238U0 exp
(
ts
τ238

)
+ 206Pbi, (4.4.9)

from which, dividing by the abundance of 204Pb0 = 204Pbi, we obtain

R207 ≡
207Pb0
204Pb0

=
207Pbi
204Pb0

+
235U0
204Pb0

[
exp

(
ts
τ235

)
− 1

]
, (4.4.10)

R206 ≡
206Pb0
204Pb0

=
206Pbi
204Pb0

+
238U0
204Pb0

[
exp

(
ts
τ238

)
− 1

]
. (4.4.11)

Measuring R207 and R206 in two different places, for example in two meteorites,
which we indicate with ‘I’ and ‘II’, one can easily get

R207,I − R207,II
R206,I − R206,II =

235U0
238U0

exp(ts/τ235)− 1
exp(ts/τ238)− 1

, (4.4.12)

from which one can recover ts. In this way one finds an age for the Solar System
of order 4.6×109 years. Analogous results can be obtained with other radioactive
nuclei such as 87Rb, which decays into 87Sr with τ87 = 6.6× 1010 years.
By analogous reasoning to that above, one finds that T + ts � (0.6–1.5) ×

1010 years and that ∆ � (1–2) × 108 years  T + ts, from which the age of the
Universe must be

tn � (0.6–1.5)× 1010 years. (4.4.13)

It is worth remarking that the time deduced for the isolation of the Solar System
∆ is of the same order as the interval between successive passages of a spiral arm
through a given location in a galaxy.
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In summary, we can see that the theoretical age of the Universe t0, the ages of
globular clusters tc and the nuclear timescale tn are all in rough agreement with
each other. This does not necessarily mean that the Universe was ‘born’ at a time
t0 in the past, in the sense that it must have been created with a singularity at
t = 0. Some ways of avoiding this kind of ‘creation’ are discussed in Chapter 6.

4.5 The Density of the Universe

Let us now give some approximate estimates of the total energy density of the Uni-
verse. We shall see that this is also uncertain by a large factor. More sophisticated
methods for measuring the density parameter are discussed in Chapter 18.

4.5.1 Contributions to the density parameter

The evolution of the Universe depends not only on the total density ρ but also
on the individual contributions from the various components present (baryonic
matter, photons, neutrinos). Let us denote the contribution of ith component to
the present density by

Ωi = ρ0iρ0c . (4.5.1)

For this section only we drop the zero suffix on Ω that indicates the present value
of this parameter. All quantities in this section are at the present time, so it should
do no harm to simplify the notation. We shall estimate the contribution Ωg from
the mass concentrated in galaxies a little later. Within a considerable uncertainty
we have

Ωg = ρ0gρ0c � 0.03. (4.5.2)

There may, of course, be a contribution from matter which is not contained in
galaxies, but is present, for example, in clusters of galaxies. The size of this con-
tribution is even more uncertain. We shall see later that a reasonable estimate for
the total amount of mass contributing to the gravitational dynamics of large-scale
objects is around

Ωdyn � 0.2–0.4. (4.5.3)

The discrepancy between the two values ofΩ given by Equations (4.5.2) and (4.5.3)
is attributed to the presence of non-luminous matter, called dark matter, which
may play an important role in structure formation, as we shall see in Section 4.6
and, in much more detail, later on.
As well as matter, the Universe is filled with a thermal radiation background,

called the cosmic microwave background (CMB) radiation. This was discovered in
1965, and we shall discuss it later in Section 4.9 and Chapter 17. The radiation
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has a thermal spectrum and a well-defined temperature of T0r = 2.726± 0.005 K.
The mass density corresponding to this radiation background is

ρ0r = σrT
4
0r

c2
� 4.8× 10−34 g cm−3 (4.5.4)

(σr = π2k4B/15�3c3 is the so-called black-body constant; the Stefan–Boltzmann
constant is just σc/4), so that the corresponding density parameter is

Ωr � 2.3× 10−5h−2. (4.5.5)

As we shall see in Section 8.5, there is also expected to be a contribution to Ω
from a cosmological neutrino background which, if the neutrinos are massless,
yields

ρ0ν � Nν × 10−34 g cm−3, (4.5.6)

where Nν indicates the number of massless neutrino species (Nν � 3, according
to modern particle physics experiments). The resulting ρ0ν is comparable with
ρ0r expressed by (4.5.4). If the neutrinos have mean mass of order 10 eV, as used
to be thought in the 1980s, then

ρ0ν � 1.9Nν
〈mν〉
10 eV

10−30 g cm−3, (4.5.7)

corresponding to

Ων � 0.1Nν
〈mν〉
10 eV

h−2, (4.5.8)

which is much larger than that implied by Equation (4.5.2); if neutrinos have a
mass of this order, then they would dominate the density of the Universe. How-
ever, more recent experimental measurements of neutrino oscillations suggest
they have a much smaller mass than this, much less than one electronvolt. Such
light neutrinos have some effect on cosmic evolution, but they do not dominate.
As far as the contribution to Ω from relativistic particles in general is con-

cerned, there is a good argument, which we shall explain in Section 11.7, why
such particles should not dominate the matter component. If this were the case,
then fluctuations would not be able to grow in order to generate galaxies and
large-scale structure by the present epoch.
Upper and lower limits on the contribution Ωb from baryonic material can be

obtained by comparing the observed abundances of light elements (deuterium,
3He, 4He and 7Li) with the predictions of primordial nucleosynthesis computa-
tions. The latest results, described in more detail in Chapter 8, give

Ωb ∼ 0.02h−2; (4.5.9)

if we allow the historical lower limit for the Hubble constant, h � 0.5, then the
largest allowed upper limit on Ωb becomes 0.08 and, if h � 1, the lower limit is
just 0.01. For small h it is therefore clear that Ωb may be compatible with Ωg, but
not with Ωdyn.
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4.5.2 Galaxies

Let us now explain in a little more detail how we arrive at the estimate Ωg given in
Equation (4.5.2). We proceed by calculating the mean luminosity per unit volume
produced by galaxies, together with the mean value of M/L, the mass-to-light
ratio, of the galaxies. Thus,

ρ0g = Lg

〈
M
L



. (4.5.10)

The value Lg can be obtained from the luminosity function of the galaxies, Φ(L).
This function is defined such that the number of galaxies per unit volume with
luminosity in the range L to L+ dL is given by

dN = Φ(L)dL. (4.5.11)

Thus,

Lg =
∫∞

0
Φ(L)LdL. (4.5.12)

The best fit to the observed properties of galaxies is afforded by the Schechter
function

Φ(L) = Φ∗
L∗

(
L
L∗

)−α
exp

(
− L
L∗

)
, (4.5.13)

where the parameters are, approximately, Φ∗ � 10−2h3 Mpc−3, L∗ � 1010h−2L�
and α � 1. The value of Lg that results is therefore

Lg � 3.3× 108hL� Mpc−3. (4.5.14)

To derive the mass-to-light ratio M/L we must somehow measure the value of M .
One can calculate the mass of a spiral galaxy if one knows the behaviour of the
orbital rotation velocity of stars with distance from the centre of the galaxy, the
rotation curve. One compares the observed curve with a theoreticalmodel in which
the rotation curve is produced by a distribution of gravitating material. There
is strong evidence from 21 cm radio and optical observations that the rotation
curves of spiral galaxies remains flat well outside the region in which most of the
luminous material resides. This demonstrates that spiral galaxies possess large
‘haloes’ of dark matter, concerning the nature of which there is a huge debate.
Some of the possibilities are neutral hydrogen gas, white dwarfs, massive planets,
black holes, massive neutrinos and exotic particles, like for instance photinos.
The mass of these haloes is thought to be between 3 and 10 times the mass of
the luminous component of the galaxy.
Elliptical and S0 galaxies do not have such ordered orbital motions as spiral

galaxies, so one cannot use rotation curves. One uses instead the virial theorem:

2Ek +U = 0, (4.5.15)
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where the mean kinetic energy Ek is estimated from the velocity dispersion of
the stars and the potential energy U is estimated from the size and shape of the
galaxy. The typical value of M/L one obtains is〈

M
L



� 30h

M�
L�
, (4.5.16)

for which

ρ0g � 6× 10−31h2 g cm−3, (4.5.17)

corresponding to

Ωg = ρ0gρ0c � 0.03. (4.5.18)

This should probably be regarded as a lower limit on the contribution due to
galaxies because it refers only to the luminous part and does not take account of
the full extent of the dark haloes.

4.5.3 Clusters of galaxies

Using the virial theorem we can also estimate the mass of groups and clusters of
galaxies. This method is particularly useful for rich clusters of galaxies like the
Coma and Virgo clusters. The kinetic energy can be estimated from the velocity
dispersion of the galaxies in the cluster

Ek � 3
2Mcl〈v2r 〉; (4.5.19)

Mcl is the total mass of the cluster and 〈v2r 〉1/2 is the line-of-sight velocity disper-
sion of the galaxies. The potential energy is given by

U � −GM
2
cl

Rcl
, (4.5.20)

where Rcl is the radius of the cluster which can be estimated from a model of its
density profile. One typically obtains from this type of analysis values of order

Mcl � 1015h−1M�. (4.5.21)

A more sophisticated approach involves more detailed modelling of the velocities
within the cluster:

M(r) = −rσ
2(r)
G

[
d logρ
d log r

+ d logσ 2
r

d log r
+ 2β

]
. (4.5.22)

This gives the mass contained within a radius r in terms of the density profile
ρ(r) and the two independent velocity dispersions in the radial and tangential
directions σ 2

r and σ 2
t ; the quantity

β = 1− σ
2
t

σ 2
r

(4.5.23)
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is a measure of the anisotropy of the radial velocity dispersion. In order to use this
equation, one needs to know the profile of galaxies and velocity dispersion as a
function of radius from the centre of the cluster. In reality, one can only measure
the projected versions of these quantities, so the problem is formally indetermi-
nate. One can, however, use a modelling procedure to perform an inversion of the
projected profiles. For the Coma cluster, the result is a total dynamically inferred
mass within an Abell radius of

Mtot � 6.8× 1014h−1M�, (4.5.24)

which corresponds to a value of M/L � 320h. Galaxies themselves therefore con-
tribute only about 15% of the mass of the Coma cluster.
This value can be compared with two alternative determinations of cluster

masses. One of these takes account of the fact that rich clusters of galaxies are
permeated by a tenuous gaseous atmosphere of X-ray emitting gas. Since the tem-
perature and density profiles of the gas can be obtained with X-ray telescopes such
as ROSAT and data on the X-ray spectrum of these objects is also often available,
one can break the indeterminacy of the modelling method. The X-ray data also
have the advantage that they are not susceptible to Poisson errors coming from
the relatively small number of galaxies that exist at a given radius. Assuming the
cluster is spherically symmetric and considering only the gaseous component, for
simplicity, the equation of hydrostatic equilibrium becomes

M(r) = −kBT(r)r
Gµmp

[
d logρ
d log r

+ d logT
d log r

]
; (4.5.25)

µ is the mean molecular weight of the gas. The procedure adopted is generally
to use trial functions for M(r) in order to obtain consistency with T(r) and the
spectrum data.
Good X-ray data from ROSAT have been used to model the gas distribution in

the Coma cluster (Briel et al . 1992) with the result that

Mgas � 5.5× 1013h−5/2M� (4.5.26)

for the mass inside the Abell radius. The gas contributes more than the galaxies,
but is still less than the total mass.
The third method for obtaining cluster masses is to use gravitational lensing.

We discuss this later, in Chapter 19. Generally speaking, all three of thesemethods
give cluster masses of the same order of magnitude, although they do not agree
in all details.
Given that there are approximately 4 × 103 large clusters of galaxies within a

distance of 6×102h−1 Mpc from the Local Group, the density of matter produced
by such clusters is roughly

ρ0cl � 4× 10−31h2 g cm−3, (4.5.27)

which is of the same order as ρ0g given by Equation (4.5.17). The reason for this
is not that virtually all galaxies reside in such clusters, which they certainly do
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not, but that the ratio M/L for the matter in clusters is much higher than that
for individual galaxies. In fact this ratio is of order 300M�/L�, roughly a factor
of ten greater than that of galaxies. This discrepancy is the origin of the so-called
‘hidden mass problem’ in galaxy clusters, namely that there seems to be matter
there in some unknown form.
If the value ofM/L for galaxies were to be reconciled with the galactic value, one

would have to have systematically overestimated the virial mass of the cluster.
This might happen if the cluster were not gravitationally bound and virialised,
but instead were still freely expanding with the background cosmology. In such a
case we would have

2Ek +U > 0 (4.5.28)

and, therefore, a smaller total mass. However, we would expect the cluster to dis-
perse on a characteristic timescale tc � lc/〈v2〉1/2, where lc is a representative
length scale for the cluster and 〈v2〉1/2 is the root-mean-square peculiar velocity
of the galaxies in the cluster; for the Coma cluster tc � 1/16H0 and it is generally
the case that tc for clusters is much less than a Hubble time. If the clusters we
observe were formed in a continuous fashion during the expansion of the Uni-
verse, many such clusters must have already dispersed in this way. The space
between clusters should therefore contain galaxies of the type usually found in
clusters, i.e. elliptical and lenticular galaxies, and they might be expected to have
large peculiar motions. One observes, however, that ‘field’ galaxies are usually spi-
rals and they do not have particularly large peculiar velocities. It seems reasonable
therefore to conclude that clusters must be bound objects.
In light of this, it is necessary to postulate the existence of some component

of dark matter (matter with a large value of M/L) to explain the virial masses
of galaxy clusters. It is known from X-ray observations of clusters that a large
fraction of the mass is in the form of hot gas. In particular, an analysis by White
et al . (1993b) of the ubiquitous Coma cluster, in conjunction with Equation (4.5.9),
indicates that, if the ratio of baryonic matter to total gravitating matter in Coma
is representative of the global ratio, then one can constrain Ω to be

Ω � 0.15h−1/2

1+ 0.55h3/2
, (4.5.29)

which is less than unity for most sensible values of h. It seems, however, that
this hot gas component is not sufficient to explain the dynamical mass; another
component is needed. This component is probably collisionless and could in prin-
ciple be in the form of cometary or asteroidal material, large planets (Jupiter-like
objects), low-mass stars (brown dwarfs), or even black holes. There are problems,
however, in reconciling the value of Ωdyn with nucleosynthesis predictions if all
the cluster mass were baryonic. A favoured option is that at least some of this
material is in the form of weakly interacting non-baryonic particles (photinos,
axions, neutrinos, etc.) left over after the Big Bang. It is even possible, as we shall
explain in Section 4.7, that these particles actually constitute the dominant contri-
bution toΩ globally, not just in cluster cores. This is an attractive notion because,
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as we shall see, a universe withΩ � 1 dominated by non-baryonicmatter has some
advantages when it comes to explaining the formation of galaxies and large-scale
structure. The existence of such a high density of non-baryonic matter would not
contradict nucleosynthesis because the weakly interacting matter would not be
involved in nuclear reactions in the early Universe. Modern inflationary cosmolo-
gies also favour Ω0 � 1 for theoretical reasons and it is often argued that if the
Universe turned out to have Ω � 1, this could be construed as evidence for infla-
tion. There is not much evidence that Ω0 ∼ 1, but we can say that it is (probably)
at least Ω0 � 0.2.

4.6 Deviations from the Hubble Expansion

In the previous section we showed how one can use virial arguments relating
velocities to gravitating mass in order to estimate masses from velocity data. The
logical extension of this type of argument is to attempt to explain the peculiar
motions of galaxies with respect to the Hubble expansion as being due to the
cosmological distribution of mass. This idea is of great current interest but the
arguments are more technical than we can accommodate in this introductory sec-
tion; details are given in Chapter 18. We can nevertheless introduce some of the
ideas here to whet the reader’s appetite.
The (radial) peculiar velocity of a galaxy is defined to be the difference between

the galaxy’s total measured radial velocity vr (obtained from the redshift) and the
expected Hubble recession velocity for a galaxy at distance d from the observer:

vp = vr −H0d. (4.6.1)

Obviously, knowledge of vp requires both the redshift and an independent mea-
surement of distance to the galaxy. The latter is not easy to acquire, so the con-
struction of catalogues of peculiar motions is not a simple task. Nevertheless,
some properties of the local flow pattern of galaxies are known. Themotion of our
Local Group of galaxies towards the Virgo cluster has been known for some time to
be v � 250±50 km s−1 and, as we shall see in Section 4.8, it is possible to estimate
our velocity with respect to the reference frame in which the cosmic microwave
background is at rest: v � 550 ± 40 km s−1 in a direction α = 10.7 ± 0.3 h and
δ = −22±5◦, 44◦ away from the Virgo cluster. For reasons we shall explain later,
one expects the resultant velocity of the Local Group to lie in the same direction
as the net gravitational acceleration on it produced by the distribution of matter
around it. Clearly then, our velocity with respect to the microwave background is
not explained by the action of the Virgo cluster. In fact, studies of galaxy-peculiar
motions show that the peculiar flow of galaxies is actually coherent over a large
scale. A region of radius 50h−1 Mpc centred on the Local Group seems to be mov-
ing en masse in a direction corresponding to the Hydra and Centaurus clusters
with a velocity of v � 600 km s−1. It was thought that this bulk flow was due to
the action of a huge concentration of mass at a distance of order 50h−1 Mpc from
the Local Group, called the Great Attractor, but it is now generally accepted that
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the pull is not due to a single mass but to the concerted effort of a large number
of clusters.
So how can the observed peculiar motions tell us about the distribution of mass

and, in particular, the total density? The arguments rely on the theory of gravi-
tational instability which we shall explain later, but a qualitative example can be
given here based on the motion of the Local Group with respect to the Virgo clus-
ter. One takes this motion to be the result of ‘infall’, which can be modelled by
a simple linear model in which a ‘shell’ of galaxies containing the Local Group
falls symmetrically onto the Virgo cluster, which is assumed to be spherical. If
the density of galaxies in the Virgo cluster is a factor (1 + ∆g) higher than the
cosmological average, the infall velocity is vLG, and the Virgocentric distance of
the Local Group is rLG, then one can estimate

Ωdyn � ∆−1.7
g

(
3vLG
H0rLG

)1.7
. (4.6.2)

This type of argument leads one to a value of Ωdyn which is consistent with that
obtained from virial arguments in clusters, i.e. Ωdyn � 0.2–0.4. More recent analy-
ses using data covering much larger scales give results apparently consistent with
Ωdyn = 1 though with a great uncertainty.
One of the problems with analyses of this type is that one has to estimate

the density fluctuation ∆g producing the peculiar motion. In the example this is
estimated as the excess density of galaxies inside the cluster compared with the
‘field’. Given that much of the mass one detects is dark, there is no reason a priori
why the fluctuation in mass density ∆m has to be the same as the fluctuation in
number density of galaxies ∆g. If these differ by a factor b, then, according to
Equation (4.6.2), one’s estimate of Ωdyn is wrong by a factor � b1.7. The idea that
galaxies might not trace the mass is usually called biased galaxy formation and
it considerably complicates the analysis of galaxy clustering and peculiar motion
studies; we discuss bias in detail in Section 14.8. Note that a value of b � 2 can
reconcile the Virgocentric flow with Ω = 1.
A more accurate determination of the anisotropy of the Hubble expansion on

large scales allows the construction of a map of the peculiar velocity field, which,
as we shall see in Chapter 18, is an important goal of modern observational cos-
mology. It is hoped that such a map will allow an accurate determination of the
distribution of matter in the Universe, even if galaxies are biased tracers of the
mass. The reason for this optimism is that all matter components exert gravity
and react to it, not just the component of luminousmatter which appears in galax-
ies. Regardless of how a galaxy forms and what it is made of, its motion is due to
the action of all the gravitating mass around it. Modern theoretical developments,
as well as new observational techniques for measuring distances to galaxies, give
good grounds for believing that this is a reasonable task.
We should also take this opportunity to make some more formal comments

about the nature of deviations from the Hubble flow in the context of the Cosmo-
logical Principle. Deviations of the type (4.6.1) can be regarded as being due to an
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anisotropic expansion such that the velocity of a distant galaxy is

vα = H β
α dβ (4.6.3)

with respect to a coordinate origin at our Galaxy. We discussed this in the context
of globally anisotropic models in Chapter 3. The tensor Hαβ is called the Hubble
tensor and can be written in the form

Hαβ = Hδαβ +ωαβ + σαβ, (4.6.4)

where δαβ is the Kronecker symbol, ωαβ is an antisymmetric tensor which rep-
resents a rotation (ωαβ = −ωβα), and σαβ is a symmetric traceless tensor which
represents shear (σαβ = σβα; σαα = 0). The constant H is the familiar Hubble
constant.
The only observable quantity is the line-of-sight velocity vr

vr = dαv
α

d
= Hd+ σαβnαnβd, (4.6.5)

where the nα are the direction cosines of a distant galaxy at d. It is found that
the contribution to the shear σαβ from massive distant clusters is of the order of
10%. In fact, by considering a large-redshift sample of distant clusters, one can
find a coordinate system in which σαβ is diagonal; in this system one finds that

|σαα| < 0.1H. (4.6.6)

This provides some evidence for the Cosmological Principle.

4.7 Classical Cosmology

In the early days of observational cosmology, much emphasis was placed on
the geometrical properties of expanding-universe models as tools for estimat-
ing parameters of the cosmological models. Indeed, famous articles by Sandage
(1968, 1970) called ‘Cosmology: the search for two numbers’ reduced all cosmol-
ogy to the task of determining H0 and q0, the deceleration parameter. Remember
that, at a generic time t the deceleration parameter is defined by

q = − äa
ȧ2

; (4.7.1)

as usual, the zero suffix means that q0 is defined at the present time. Matter-
dominated models with vanishing Λ have

q0 = 1
2Ω0, (4.7.2)

so the parameters q0 and Ω0 are essentially equivalent. If there is a cosmological
constant contributing towards the spatial curvature, however, we have the general
relation

q0 = 1
2Ω0 −ΩΛ. (4.7.3)

In the case where ΩΛ +Ω0 = 1 (κ = 0) we have q0 < 0 for Ω0 < 2
3 .
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The parameters H0 and q0 thus furnish a general description of the expansion
of a cosmological model: these are Sandage’s famous ‘two numbers’. Their impor-
tance is demonstrated in standard cosmology textbooks (Weinberg 1972; Peebles
1993; Narlikar 1993; Peacock 1999), which show how the various observational
relationships, such as the angular diameter–redshift and apparent magnitude–
redshift relations for standard sources, can be expressed in simple forms using
these parameters and the Robertson–Walker metric. In the standard Friedmann–
Robertson–Walker models, the apparent flux density and angular size of a stan-
dard light source or standard rod depend in a relatively simple way on q0 (Hoyle
1959; Sandage 1961, 1968, 1970, 1988; Weinberg 1972), but the relationships are
more complex if the cosmological constant term is included (e.g. Charlton and
Turner 1987).
During the 1960s and early 1970s, a tremendous effort was made to deter-

mine the deceleration parameter q0 from the magnitude–redshift diagram. For a
while, the preferred value was q0 � 1 (Sandage 1968) but eventually the effort
died away when it was realised that evolutionary effects dominated the observa-
tions; no adequate theory of galaxy evolution is available that could enable one to
determine the true value of q0 from the observations. To a large extent this is the
state of play now, although the use of the angular size–redshift and, in particular,
the magnitude–redshift relation for Type Ia supernovae have seen something of
a renaissance of this method. We shall therefore discuss only the recent develop-
ments in the subsequent sections.

4.7.1 Standard candles

The fundamental property required here is the luminosity distance of a source,
which, for models with p = Λ = 0, is given by

dL(z) = c
H0q20

[q0z + (q0 − 1)(
√
2q0z + 1− 1)]; (4.7.4)

this relationship is simply defined in terms of the intrinsic luminosity of the
source L and the flux l received by an observer using the Euclidean relation

dL =
(
L

4πl

)1/2
. (4.7.5)

One usually seeks to exploit this dependence by plotting the so-called ‘Hubble
diagram’ of apparent magnitude against redshift for objects of known intrinsic
luminosity: this boils down to plotting log l against z, hence the dependence on
dL.
The problem with exploiting such relations to prove the value of q0 directly is

that one needs to have a standard ‘candle’: an object of known intrinsic luminosity.
The dearth of classes of object suitable for this task is, of course, one of the
reasons why the Hubble constant is so poorly known locally. If it were not for
recent developments based on one particular type of object – Type Ia supernovae –
we would have been inclined to have omitted this section entirely. As it is now,
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Figure 4.8 The magnitude–redshift diagram for high-redshift supernovae measured by
two independent groups. The data show a preference for models with a contribution from
Λ. Picture courtesy of Bob Kirschner.

we consider that these sources offer the most exciting prospects for classical
cosmology within the next few years.
The homogeneity and extremely high luminosity of the peak magnitudes of

Type Ia supernovae, along with physical arguments as to why they should be stan-
dard sources, have made these attractive objects for observational cosmologists
in recent years (e.g. Branch and Tammann 1992), though the use of supernovae
has been discussed before, for example, by Sandage (1961). The current progress
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stems from the realisation that these objects are not in fact identical, but form a
family which can nevertheless be mapped onto a standard object by using inde-
pendent observations. Correlations between peak magnitude and the shape of
the light curve (Hamuy et al . 1995; Riess et al . 1995) or spectral features (Nugent
et al . 1995) have reduced the systematic variations in peak brightness to about
two-tenths of a magnitude. The great advantages of these objects are

1. because their behaviour depends only on the local physics, they are expected
to be independent of environment and evolution and so are good candidates
for standard candles, and

2. that they are bright enough to be seen at quite high redshifts, where the
dependence on cosmological parameters (4.7.4) is appreciable.

Two teams are pursuing the goal of measuring cosmological parameters using
Type Ia supernovae. Originally, results seemed to suggest a measurement of pos-
itive q0, but more recently it has become apparent that the high-redshift super-
novae may be fainter, i.e. be at larger luminosity distance, for a given z than is
compatible with q0 > 0. If these measurements are being interpreted correctly,
and there is as yet no reason to believe they are not, this is compelling evidence
for a cosmological constant.

4.7.2 Angular sizes

The angle subtended by a standard metric ‘rod’ behaves in an interesting fashion
as its distance from the observer is increased in standard cosmologies. It first
decreases, as expected, then reaches a minimum after which it increases again
(Sandage 1961). The position of the minimum depends upon q0 (Ellis and Tivon
1985; Janis 1986). This somewhat paradoxical behaviour can bemore easily under-
stood by remembering that the light from very-high-redshift objects was emitted
a long time ago when the proper distance to the object would have been much
smaller than it is at the present epoch. Given appropriate dynamics, therefore,
it is quite possible that distant objects appear larger than nearby ones with the
same physical size.
Formodels withΛ = 0 the relationship between angular diameter θ and redshift

z for objects moving with the Hubble expansion and with a fixed metric diameter
d is simply

θ = d(1+ z)
2

dL(z)
, (4.7.6)

where DL(z) is the luminosity distance given by Equation (4.7.4).
As with the standard candles, astronomers are generally not equipped with

standard sources they are able to place at arbitrarily large distances. To try to use
this method, one must select galaxies or other sources and hope that the intrin-
sic properties of the objects selected do not change with their distance from the
observer. Because light travels with a finite speed, more distant objects emitted
their light further in the past than nearby objects. Lacking an explicit theory of



98 Observational Properties of the Universe

SS

0.1
0.2

0.5

1.0

median angular size versus redshift

100

10

1

0.1
0.01

ch
ar

ac
te

rs
iti

c 
an

gu
la

r 
si

ze
 (

m
as

)

redshift

1010.1

Figure 4.9 Angular diameter versus redshift for 145 radio sources. From Gurvits et al .
(1999). Picture courtesy of Leonid Gurvits.

source evolution, one must assume the source properties do not vary with cosmo-
logical time. Since there is overwhelming evidence for strong evolution with time
in almost all classes of astronomical object, the prospects for using this method
are highly limited.
An example is the attempt by Kellermann (1993) to resurrect this technique

by applying it to compact radio sources. These sources are much smaller than
the extended radio sources discussed in previous studies, so one might there-
fore expect them to be less influenced by, for example, the evolution of the cos-
mological density. Kellermann originally found a minimum in the angular-size
versus distance relationship, but a subsequent analysis by Gurvits et al . (1999)
found a larger scatter in the data. We must therefore conclude that the evidence
from the angular size data is not particularly compelling. Indeed, it is not at
all obvious that there are any ‘standard metre sticks’ in sight that will be visi-
ble at high redshift and also will have well-understood evolutionary properties
that could lead to a change in this situation. It is wise not to be too optimistic
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about this method yielding decisive results, although it is possible that angu-
lar size estimates of clusters of sources, or measurements of angular separa-
tion of similar objects, could eventually give the statistical data needed for this
test.

4.7.3 Number-counts

An alternative approach is not to look at the properties of objects themselves
but to try to account for the cumulative number of objects one sees in sam-
ples that probe larger and larger distances. A first application of this idea was
by Hubble (1929); see also Sandage (1961). By making models for the evolu-
tion of the galaxy luminosity function one can predict how many sources one
should see above an apparent magnitude limit and as a function of redshift. If
one accounts for evolution of the intrinsic properties of the sources correctly,
then any residual dependence on redshift is due to the volume of space encom-
passed by a given interval in redshift; this depends quite strongly on Ω0. The
considerable evolution seen in optical galaxies, even at moderately low redshifts,
as well as the large K-corrections and uncertainties in the present-day luminosity
function, renders this type of analysis prone to all kinds of systematic uncer-
tainties. One of the major problems here is that one does not have complete
information about the redshift distribution of galaxies appearing in the counts.
Without that information, one does not really know whether one is seeing intrin-
sically fainter galaxies relatively nearby, or relatively bright galaxies further away.
This uncertainty makes any conclusions dependent upon the model of evolution
assumed.
Controversies are rife in the history of this field. A famous application of this

approach by Loh and Spillar (1986) yielded a value Ω0 = 1+0.7−0.5. This is, of course,
consistent with unity but cannot be taken as compelling evidence. A slightly
later analysis of these data by Cowie (1988) showed how, with slightly differ-
ent assumptions, one can reconcile the data with a much smaller value of Ω0.
Further criticisms of the Loh–Spillar analysis have been lodged by other authors
(Bahcall and Tremaine 1988; Caditz and Petrosian 1989). Such is the level and
apparent complexity of the evolution in the stellar populations of galaxies over
the relevant timescale that we feel that it will be a long time before we under-
stand what is going on well enough to even try to disentangle the cosmological
and evolutionary aspects of these data. There has been significant progress, how-
ever, with number-counts of faint galaxies, beginning in the late 1980s (Tyson
and Seitzer 1988; Tyson 1988) and culminating with the famous ‘deep field’
image taken with the Hubble Space Telescope, which is shown in Figure 4.10.
The ‘state-of-the-art’ analysis of number-counts (Metcalfe et al . 2001) is shown
in Figure 4.11, which displays the very faint number-counts from the HST in
two wavelength bands, together with ground-based observations from other sur-
veys. The implications of these results for cosmological models are unlikely to
be resolved unless and until there are major advances in the theory of galactic
evolution.
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Figure 4.10 Part of the HST deep field image, showing images of galaxies down to limiting
visual magnitude of about 28.5 in blue light. By extrapolating the local luminosity function
of galaxies, one concludes that a large proportion of the galaxies at the faint limit have
z > 2. Picture courtesy of the Space Telescope Science Institute.

4.7.4 Summary

The problem with most of these tests is that, if the Big Bang is correct, objects at
high redshift are younger than those nearby. One should therefore expect to see
evolutionary changes in the properties of galaxies, and any attempt to define a
standard ‘rod’ or ‘candle’ to probe the geometry will be very prone to such evolu-
tion. Indeed, as we shall see, many of these tests require considerable evolution
in order to reconcile the observed behaviour with that expected in the standard
models. It is worth mentioning these problems at this point in order to introduce
the idea of evolution in galaxy properties, which we shall return to in Section 19.4.
Direct observations of gravitational lensing may prove to be a more robust diag-

nostic of spatial curvature and hence of the cosmological model. The statistics of
the frequency of occurrence of multiply lensed quasars can, in principle, be used
to measure q0. This method is in its infancy at the moment, however, and no
strong constraint on the spatial geometry has yet emerged; see Chapter 20 for
more details of this.

4.8 The Cosmic Microwave Background

The discovery of the microwave background by Penzias and Wilson in 1965,
for which they later won the Nobel Prize, provided one of the most impor-
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Figure 4.11 Compilation of number-count data in the B (blue) band, from Metcalfe et al .
(2001). Picture courtesy of Tom Shanks.

tant pieces of evidence for the hot Big Bang model. In fact this discovery was
entirely serendipitous. Penzias and Wilson were radio engineers investigating
the properties of atmospheric noise in connection with the Telstar communi-
cation satellite project. They found an apparently uniform background ‘hiss’ at
microwave frequencies which could not be explained by instrumental noise or by
any known radio sources. After careful investigations they admitted the possi-
ble explanation that they had discovered a thermal radiation background such
as that expected to be left as a relic of the primordial fireball phase. In fact,
the existence of a radiation background of roughly the same properties as that
observed was predicted by George Gamow in the mid-1940s, but this predic-
tion was not known to Penzias and Wilson. A group of theorists at Princeton
University, including Dicke and Peebles, soon saw the possible interpretation of
the background ‘hiss’ as relic radiation, and their paper (Dicke et al . 1965) was
published alongside the Penzias and Wilson (1965) paper in the Astrophysical
Journal.
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The cosmic microwave background is a source of enormous observational and
theoretical interest at the present time, so we have devoted the whole of Chap-
ter 17 to it. For the present we shall merely mention two important properties.
First, the CMB radiation possesses a near-perfect black-body spectrum. The the-

oretical ramifications of this result are discussed in Chapter 9 and Section 19.3;
the latest spectral data are also shown later, in Figure 9.1. At the time of its
discovery the CMB was known to have an approximately thermal spectrum, but
other explanations were possible. Advocates of the steady state proposed that one
was merely observing starlight reprocessed by dust and models were constructed
which accounted for the observations reasonably well. In the past 30 years, how-
ever, continually more sophisticated experimental techniques have been directed
at the measurement of the CMB spectrum, exploiting ground-based antennae,
rockets, balloons and, most recently and effectively, the COBE satellite. The COBE
satellite had an enormous advantage over previous experiments: it was able to
avoid atmospheric absorption, which plays havoc with ground-based experiments
at microwave and submillimetric frequencies. The spectrum supplied by COBE
reveals just how close to an ideal black body the radiation background is; the
temperature of the CMB is now known to be 2.726±0.005 K. Attempts to account
for this in a steady-state model by non-thermal processes are entirely contrived.
The CMB radiation really is good evidence that the Big Bang model is correct.
The second important property of the CMB radiation is its isotropy or, rather,

its small anisotropy. The temperature anisotropy is usually expressed in terms of
the quantity

∆T
T
(θ,φ) = T(θ,φ)− T0

T0
, (4.8.1)

which gives the temperature fluctuation as a fraction of the mean temperature T0
as a function of angular position on the sky. Penzias and Wilson (1965) were only
able to give rough constraints on the departure of the sky temperature of the CMB
from isotropy. Theorists soon realised, however, that if the CMB actually did origi-
nate in the early stages of a Big Bang, it should bear the imprint of various physical
processes both during and after its production. However, attempts to detect varia-
tions in the temperature of the CMB on the sky have, until recently (with the excep-
tion of the dipole anisotropy; see below), been unsuccessful. The observed level
of isotropy of the cosmic microwave background radiation is important because:

1. it provides strong evidence for the large-scale isotropy of the Universe;

2. it excludes any model in which the radiation has a galactic origin or is pro-
duced by a random distribution of sources, also on the grounds of its near-
perfect black-body spectrum; and

3. it can provide important information on the origin, nature and evolution of
density fluctuations which are thought to give rise to galaxies and large-scale
structures in the Universe.

Let usmention some of the possible sources of anisotropy here, though we shall
return to the CMB in much more detail in Chapter 17. First, there is known to be
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a dipole anisotropy (a variation on a scale of 180◦)

T(ϑ) = T0
(
1+ ∆TD

T0
cosϑ

)
, (4.8.2)

which is due to the motion of the observer through a reference frame in which the
CMB is ‘at rest’, meaning the frame in which the CMB appears isotropic; notice that
there is no dependence upon φ in this expression. The amplitude and direction
of the dipole anisotropy have been known for some time: the amplitude is around
∆TD/T0 � 10−3 � v/c, where v is the velocity of the observer. After subtracting
the Earth’s motion around the Sun, and the Sun’s motion around the galactic
centre, this observation can be used to determine the velocity of our Galaxy with
respect to this ‘cosmic reference frame’. The result is a rather large velocity of v �
600 km s−1 in the direction of the constellations of Hydra-Centaurus (l = 268◦,
b = 27◦). This velocity can be used in an ingenious determination of Ω0, as we
describe later in Chapter 18.
On smaller scales, from the quadrupole (90◦) down to a few arcseconds, there

are various possible sources of anisotropy as follows.

1. If there are inhomogeneities in the distribution of matter on the surface of
last scattering, described in Section 9.5, these can produce anisotropies by
the redshift or blueshift of photons from regions of different gravitational
potential, the Sachs–Wolfe effect (Sachs and Wolfe (1967)).

2. If material on the last scattering surface is moving, then it will induce tem-
perature fluctuations by the Doppler effect (material moving towards the
observer will be blueshifted, that moving away will be redshifted).

3. The coupling between matter and radiation at last scattering may mean that
dense regions are actually intrinsically hotter than underdense regions.

4. An inhomogeneous distribution of material between the observer and the
last scattering surfacemay induce anisotropy by inverse Compton scattering
of CMB photons by free electrons in a hot intergalactic plasma (the Sunyaev–
Zel’dovich effect (Sunyaev and Zel’dovich 1969); see Section 17.7 for the pos-
sible use of this effect in determining H0).

5. Photons travelling through a time-varying gravitational potential field also
suffer an effect similar to (i) (usually called the Rees–Sciama effect (Rees
and Sciama 1968), but actually it is simply a version of the Sachs–Wolfe
phenomenon).

As we shall see in Chapter 17, the COBE satellite has recently detected
anisotropy on the scale of a few degrees up to the quadrupole. This detection,
with an amplitude of ∆T/T � 10−5, has been independently confirmed by an
experiment on Tenerife. The characteristics of this signal are consistent with it
being due to the Sachs–Wolfe effect (i). If the primordial fluctuations giving rise
to this effect are indeed the seeds of galaxies and clusters, then this observation
has profound implications for theories of galaxy and cluster formation. Attempts
are currently being made to measure the anisotropy on smaller scales than this.
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The balloon-borne experiments MAXIMA and Boomerang have mapped the small-
scale structure of the cosmic microwave background over small patches of the
sky. Soon, the US satellite MAP (Microwave Anisotropy Probe) will map the whole
sky and around 2007 a European mission called the Planck Surveyor will do like-
wise with even higher resolution. As we shall see in Chapter 17, angular scales of
a degree or less are a sensitive diagnostic of the form of fluctuations present in
the early Universe as well as the geometry of the background Universe.

Bibliographic Notes on Chapter 4

More detailed discussions of galaxy properties can be found in Binney and
Tremaine (1987) and Binney and Merrifield (1998). For historical interest, Zwicky
(1952) is also worth consulting, as is Faber and Gallagher (1979).
Historically important papers on the development of cosmography are Abell

(1958); Bahcall (1988); Rood (1988); Shane andWirtanen (1967); Shapley and Ames
(1932) and Zwicky et al . (1961–1968). The classic reference on the expansion of
the Universe is Hubble (1929), but readers should be aware that much of the
data upon which Hubble based his arguments were obtained by Slipher (1914).
Rowan-Robinson (1985) gives a detailed overview of the distance ladder; a more
recent paper is that by Fukugita et al . (1992). Interesting sources on the density
parameter are Peebles (1986), Trimble (1987) and Sciama (1993). Arguments in
favour of a Universe with Ω0 < 1 can be found in Coles and Ellis (1994, 1997).

Problems

1. Show that the Hubble profile of surface brightness (4.1.5) leads to an infinite total
luminosity, while the law

I = I0 exp[−(r/a)1/4],
with a a constant, does not. In the second case, estimate (in units of a) the value
of r that encloses half the total light and compare your answer for an exponential
disc (4.1.6).

2. The half-life of Uranium-235 is 0.7× 109 years, while that of Uranium-238 is 4.5×
109 years. A rock has an observed abundance ratio

[ 235U
238U

]
= 0.00723,

while these isotopes are thought to be produced in supernovae explosions with a
relative abundance of 1.71. Assuming all the material in the rock was produced in
a single supernova event, estimate the time that has elapsed since this event took
place.

3. Calculate the rotation curve, v(R), for test particles in circular orbits of radius R:
(a) around a point massM ; (b) inside a rotating spherical cloud with uniform density;
and (c) inside a spherical halo with density ρ(r)∝ 1/r 2.
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4. The Tully–Fisher relation (4.3.2) usually has an index α � 3. Show that, in a simple
model of a galaxy in which stars undergo circular motions in a disc of constant
thickness and in which the mass-to-light ratio is constant, a value α = 4 would be
expected.

5. Assuming all elliptical galaxies have the same central surface brightness and that
they are in virial equilibrium, derive the Faber–Jackson relation (4.3.4).

6. Assume that the mass-to-light ratio, M/L, for the Galaxy is, and always has been,
10 in solar units. What is the maximum fraction of the total mass that could have
been burnt into helium from hydrogen over 1010 years? (The mass deficit for the
reaction 4H → 4He is 0.7%.)

7. If the luminosity function of galaxies is given by the Schechter function (4.5.13),
show that when α = 1.5 the total luminosity of all galaxies is approximately
1.77Φ∗L∗. The volume through which a galaxy of luminosity L can be seen above
a fixed magnitude limit is proportional to L3/2. Hence show that in a magnitude-
limited survey of galaxies with a luminosity function of this form, about half will
have luminosity exceeding about 0.7L∗ but less than about 5% will have luminosity
greater than 3L∗.

8. Prove the virial theorem (4.5.15) for a system of self-gravitating masses in statistical
equilibrium.





PART2

The Hot Big Bang Model





5

Thermal History
of the Hot Big
Bang Model

5.1 The Standard Hot Big Bang

The hot Big Bang is the name usually given to the standard cosmological model: a
homogeneous, isotropic universe whose evolution is governed by the Friedmann
equations obtained from general relativity (with or without a cosmological con-
stant), whose main constituents can be described by matter and radiation fluids,
and whose kinematic properties (i.e. the Hubble constant) match those we observe
in the real Universe. It is further assumed that the radiation component of the
energy density is of cosmological origin: this is why the term ‘hot’ is given to the
model. Of course, our real Universe is not exactly homogeneous and isotropic, so
this model is to some extent an abstraction. However, as we shall see later, this
standard model does provide us with a framework within which we can study the
emergence of structures like the observed galaxies and clusters of galaxies from
small fluctuations in the density of the early Universe. In this chapter, we give a
brief overview of the evolution the basic physical properties of this model; more
detailed treatment will be deferred to Chapters 8 and 9.
As we have already seen in Chapter 4, the present-day matter density is

ρ0m = ρ0cΩ0m � 1.9× 10−29Ω0mh2 g cm−3. (5.1.1)

In the following, as in Chapter 4, we shall drop one of the subscripts and use
Ω0 to quantify the density of non-relativistic matter. Observations tell us that



110 Thermal History of the Hot Big Bang Model

Ω0 is somewhere in the range 0.01 < Ω0 < 2. The luminous material in galax-
ies and clusters is primarily hydrogen and a small part of helium. Cosmological
nucleosynthesis provides an explanation for the relative abundances of these, and
other, light elements: see Chapter 8. As we have seen, however, the Universe is
probably dominated by unseen dark matter, whose nature is yet to be clarified.
The energy-density contributed by the radiation background at 2.73 K is

ρ0r = σrT
4
0r

c2
� 4.8× 10−34 g cm−3, (5.1.2)

where σr is the radiation density constant. We discussed this before, in Chapter 4.
The standard model also predicts the existence of a cosmological background of
neutrinos, which we discuss more fully in Chapter 8, with an energy density

ρ0ν � Nν × 10−34 g cm−3; (5.1.3)

Nν is the number of neutrino species, which is now known from particle physics
experiments at LEP/CERN to be very close to Nν = 3. Equation (5.1.3) applies if
the neutrinos are massless, which we shall assume to be the case in this chap-
ter; the idea that they might have a mass of order 〈mν〉 � 10 eV would have
important implications for cosmology, as we shall discuss in Chapters 8 and 13.
If the neutrinos are massless, then their contribution to the density parameter is
Ω0ν � Ω0r � 10−5h−2.
From the point of view of the Friedmann models, the real Universe is well

approximated as a dust or matter-dominated model, with total energy density

ρ0 = ρ0m + ρ0r + ρ0ν � ρ0m, (5.1.4)

and pressure

p0 = p0m + p0r + p0ν � ρ0mkBT0mmp
+ 1

3ρ0rc
2 � ρ0rc2  ρ0c2, (5.1.5)

where T0m is the present temperature of the intergalactic gas (assumed to be
hydrogen) and mp is the proton mass. This temperature is different from the
temperature of the radiative component, T0r, because matter and radiation are
completely decoupled from each other at the present epoch. In fact the neutrino
component is also decoupled from the other two (matter and photons). Matter
and radiation are decoupled because the characteristic timescale for collisions
between photons and neutral hydrogen atoms, τ0c =mp/(ρ0mσHc), where σH is
the scattering cross-section of a hydrogen atom, is much larger than the charac-
teristic time for the expansion of the Universe: τH ≡ (a/ȧ)0 = H−1

0 .
An important quantity is the ratio, η0, between the present mean number-

density of nucleons (or baryons), n0b, and the corresponding quantity for pho-
tons, n0γ . The present density in baryons is

n0b = ρ0mmp
� 1.12× 10−5Ω0bh2 cm−3, (5.1.6)
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while the corresponding number for the photons is obtained by integrating over
a Planck spectrum at a temperature of T0r = 2.73 K:

n0γ =
(
kBT0r

�c

)3 ∫∞

0

8πx2 dx
ex − 1

= 2
ζ(3)
π2

(
kBT0r

�c

)3
� 420 cm−3; (5.1.7)

the quantity ζ(3) � 1.202, where ζ is the Riemann zeta function which crops up
in the integral over the black-body spectrum. We therefore have

η−10 = n0γ
n0b

� 3.75× 107(Ω0bh2)−1; (5.1.8)

we prefer to give the value η−10 rather than η0 because, as we shall see, η−10 prac-
tically coincides with the entropy per baryon, σ0r, which will figure prominently
later on. The fact that η−10 is so large is of particular importance in the analysis
of the standard model; we shall return to it later.

5.2 Recombination and Decoupling

During the period in which matter and radiation are decoupled, the matter tem-
perature, Tm, and the radiation temperature, Tr, evolve independently of each
other. If the gas component expands adiabatically, and is assumed to consist only
of hydrogen, standard thermodynamics gives us

d
[(
ρmc2 + 3

2ρm
kBTm
mp

)
a3
]
= −ρmkBTmmp

da3. (5.2.1)

Given that ρma3 is constant, because of mass conservation, Equation (5.2.1) leads
to

Tm = T0m
(
a0
a

)2
= T0m(1+ z)2, (5.2.2)

which is nothing other than the usual relation TVγ−1 = const. for a monatomic
gas (γ = 5

3). For a gas of photons, we use the relationship between the energy-
density and temperature of a black body,

ρrc2 = σrT 4r , (5.2.3)

to find that

Tr = T0ra0a = T0r(1+ z). (5.2.4)

If σc, the collision cross-section between photons and atoms, is constant, then
the collision time τc simply scales as the inverse of the number-density of atoms
and therefore decreases with redshift much more rapidly than the characteristic
timescale for the expansion τH: for example, in a flat universe,

τc ∝ ρ−1m ∝ (1+ z)−3, (5.2.5)

τH =
(
ȧ
a

)−1
∝ (1+ z)−3/2, (5.2.6)
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where we have assumed matter domination to calculate τH; if the Universe were
radiation dominated, this reasoning would still hold good. In fact, the cross-
section for scattering of electrons by atoms does not behave as simply as this
with z. The main mechanism by which photons interact with matter is Thomson
scattering by electrons, but photons of sufficient energy can also be absorbed by
the atom, resulting in photo-ionisation. The ions thus produced may then recom-
bine, with the usual cascades producing the Lyman and Balmer series. Photons of
exactly the right wavelength can also cause upward transitions, leading to absorp-
tion lines. However, in the cosmological situation we are interested in, it suffices
to take Thomson scattering by electrons as the dominant mechanism. As we shall
see, as the photon energies increase to the energies relevant for the other pro-
cesses mentioned here, the plasma becomes fully ionised and Thomson scatter-
ing is then indeed the dominant interaction between the matter and radiation.
In any event, there clearly exists a time, say td, before which scattering occurs
on a timescale much less than the expansion timescale, resulting in a tight cou-
pling between matter and radiation. After td, a process of decoupling occurs and,
for t � td, matter and radiation effectively evolve separately. As we shall see in
Chapter 9, this process is not instantaneous and actually continues over a rela-
tively large range of t (or z). Before decoupling, at t = td, matter and radiation are
held in equilibrium with each other at the same temperature, and T varies with
z in a manner intermediate between (5.2.2) and (5.2.4), which we can represent
by Equation (5.3.3) below. At very high T (high z), the equilibrium state for the
matter component has a very high state of ionisation. As T decreases, the fraction
of atoms which are ionised (the degree of ionisation) falls. There exists therefore
a time, say trec, before which the matter is fully ionised, and after which the ion-
isation is very small. This transition is usually called recombination, although it
would be more accurate to call it simply combination. Recombination is also a
relatively gradual process so it does not occur at a single definite t = trec. Notice,
however, that in general td � trec. We discuss recombination and decoupling in
the context of realistic cosmological models in Section 5.4 and in Chapter 9.

5.3 Matter–Radiation Equivalence

Another important timescale in the thermal history of the Universe is that of
matter–radiation equivalence, say t = teq, which we take to occur at zeq = z(teq).
Remember that the matter density evolves according to

ρm = ρ0m(1+ z)3, (5.3.1)

while the density of radiation follows

ρr = ρ0r(1+ z)4, (5.3.2)

in the period after decoupling, and

ρr ∝ T 4 ∝ (1+ z)4+ε(z) (5.3.3)
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before decoupling; in the relation (5.3.3), 0 < ε(z) < 4 is a term included to take
account of the evolution of T(z) in this regime. It turns out that ε(z) is actually
very small, for reasons we shall discuss later.
Matter–radiation equivalence occurs when the densities (5.3.1) and (5.3.3) are

equal. Of course, if there are other components of the fluid which are relativistic
at interesting redshifts, then they should, strictly speaking, be included in the
definition of this timescale. In general, if there are several relativistic components,
labelled i, each contributing a fraction Ω0r,i of the present critical density, then
the total relativistic contribution dominates for

1+ z > 1+ zeq = Ω0∑
i Ω0r,i

= Ω
Ω0r,tot

, (5.3.4)

where Ω0 is the density parameter for the non-relativistic material. We have
assumed ε = 0 in Equation (5.3.4). If we neglect the contribution to the sum
in (5.3.4) due to relativistic particles other than photons, we find zeq � 4.3 ×
104Ω0h2.

5.4 Thermal History of the Universe

Before decoupling at t = td, matter and radiation are tightly coupled. This is
ultimately due to the fact that, before recombination, the matter component is
fully ionised and the relevant photon scattering cross-section is therefore the
Thomson scattering cross-section σT, which is much larger than that presented
by a neutral atom of hydrogen. As we have explained, this guarantees that the
radiative component (photons) and the matter component (the electron–proton
plasma) have the same temperature T . Let us now investigate the behaviour of
this temperature in more detail.
The appropriate expression governing the adiabatic expansion of a gas ofmatter

and radiation is

d
[(
ρmc2 + 3ρmkBT

2mp
+ σrT 4

)
a3
]
= −

(
ρmkBT
mp

+ σrT
4

3

)
da3, (5.4.1)

in which we assume the matter component has the equation of state of a perfect
gas:

p = ρmkBT
mp

. (5.4.2)

Recall that ρma3 = const., and introduce the dimensionless constant

σrad = 4mpσrT 3

3kBρm
; (5.4.3)

the physical significance of σrad will become apparent shortly. From (5.4.1) we
have

dT
T

= −1+ σrad
1
2 + σrad

da
a
, (5.4.4)



114 Thermal History of the Hot Big Bang Model

which, unfortunately, cannot be integrated analytically, because σrad(T) depends
on the unknown function T(a). It is easy to see that σrad(T) does not depend on
a after decoupling if we interpret T as the temperature of the radiation. The value
of σrad must therefore coincide with its present value σrad(t = t0), which can be
calculated in terms of the present density of the Universe, ρ0m, and the present
radiation temperature, T0r:

σrad(t = t0) = 4mpσrT 30r
3kBρ0m

� 3.6η−10 � 1.35× 108(Ω0bh2)−1, (5.4.5)

which is a very large number given the known bounds on the parameters Ω0b and
h.
The Equation (5.4.4) is valid also at t = td. In a short interval of time at td, we

can make use of the fact that σrad(t) � σrad(td) = σrad(t0)� 1, thus obtaining

dT
T

� −da
a
, (5.4.6)

which, upon integration, leads to Equation (5.2.4). This shows that we indeed
expect ε � 0; it is virtually guaranteed by the very high actual value of σ0r.
At higher temperatures, the matter component also becomes relativistic and

therefore assumes the equation of state p = 1
3ρc

2. In this regime the behaviour
of T is very closely represented by Equation (5.2.4). The reason for this is as
follows.
Suppose the temperature of the Universe exceeds a value Tp, such that

kBTp � 2mc2, (5.4.7)

where p is a particle with massm (for example an electron). In this situation the
creation–annihilation reaction

γ + γ′ � e+ + e− (5.4.8)

has an equilibrium which lies to the right. A significant number of electron–
positron (e+–e−) pairs are therefore created. At higher temperatures still, even
more particle species might be created, of higher and higher masses.
The era contained between the two temperatures Te (� 5×109 K) and Tπ , where

e and π are the electron and pion, respectively, is called the lepton era because, as
besides the radiative fluid of photons and neutrinos, the background of leptons
e+, e−, µ+, µ− and τ+ and τ− dominates the energy density. The brief interval
with 200–300 MeV > kBT > Tπ � 130 MeV is called the hadron era, because as
well as photons, neutrinos and leptons, we now also have hadrons (π0, π+, π−, p,
p̄, n, n̄, etc.); they do not, however, dominate the energy density. For kBT > 200–
300 MeV, the hadrons are separated into their component quarks. We shall discuss
these phases in some detail in Chapter 8. There are so many relativistic particle
species at such high energies, however, that for the moment it suffices to say
that it is a good approximation to take the relativistic equation of state p = 1

3ρc
2

and ρc2 = AσT 4 appropriate for pure radiation, which gives the Equation (5.2.4)
exactly, but in which the constant A describes the fact that there are many differ-
ent relativistic particles in addition to the photons.
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5.5 Radiation Entropy per Baryon

As we have seen in Section 5.4, the high value of σrad guarantees that the temper-
ature and density of the radiation, to a very good approximation, evolve as in a
pure radiation universe. The quantity σrad is actually related to the ratio between
the entropy of the radiation per unit volume,

sr = ρrc
2 + pr
T

= 4
3
ρrc2

T
= 4
3
σrT 3, (5.5.1)

and the number-density of baryons,

nb = ρmmp
, (5.5.2)

written in dimensionless form by dividing by Boltzmann’s constant:

σrad = sr
kBnb

. (5.5.3)

The quantity σ−1
rad is proportional to the ratio η between the number-density of

baryons and that of photons. From Equations (5.1.8) and (5.2.3) we get

σrad = 3.6η−1. (5.5.4)

The quantity σrad is also proportional to the ratio of the heat capacity per unit vol-
ume of the radiation, ρrcr, and that of the matter, ρmcm. In fact, for the radiation,

ρrcr = ∂(ρrc
2)

∂T
= ∂(σrT

4)
∂T

= 4σrT 3, (5.5.5)

and for the matter,

ρmcm = ∂(3ρmkBT/2mp)
∂T

= 3
2
ρm
mp
kB, (5.5.6)

from which
ρrcr
ρmcm

= 2σrad; (5.5.7)

the high value of this ratio makes sure that the coupled matter–radiation fluid
follows the cooling law for pure radiation to a very good approximation.
The quantity σrad is also (and finally) related to the scale of primordial baryon–

antibaryon asymmetry present in the early Universe. Let us indicate by nb and nb̄
the baryon and antibaryon number density, respectively. The quantity (nb−nb̄)a3
remains constant during the expansion of the Universe because baryon number
is a conserved quantity. In fact, one does not observe a significant presence of
antibaryons, so the relevant quantity is just n0ba30. (If there were significant quan-
tities of antibaryons, annihilation events would lead to amuch greater background
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of gamma rays than is observed.) In the epoch following TGUT � 1015 GeV, which
we will discuss in Chapter 7, we have

nb � nb̄ � nγ ∝ T 3, (5.5.8)

from which the baryon–antibaryon asymmetry is expected to be

nb −nb̄
nb +nb̄

� nb −nb̄
2nγ

� n0b
2n0γ

. (5.5.9)

The baryon–antibaryon asymmetry is very small, of the order of σ−1
rad, so that for

every, say, 109 antibaryons there will be 109 + 1 baryons. The reason for this
asymmetry, and why it is so small, is therefore the same as the reason why the
value of σrad is large. Developments in the theory of elementary particles have led
to some suggestions as to how cosmological baryosynthesis might occur; we shall
discuss them in some detail in Chapter 7.

5.6 Timescales in the Standard Model

In the standard model, after the lepton era, the Friedmann Equation (1.12.6)
becomes (

ȧ
a0

)2
= H2

0

[
Ω0
a0
a

+Ω0rK0
(
a0
a

)2
+ (1−Ω0 −Ω0r)

]
, (5.6.1)

where, as usual, the suffix ‘0’ refers to the present epoch. The last bracket neglects
contributions from relativistic particles which are small at the present time. Jump-
ing the gun slightly (see Chapter 8 for details), we have replaced the purely radia-
tion contributionΩr byK0Ωr to take account of the contribution of light neutrinos
to the relativistic part of the fluid; that is to say, the sum over i in Equation (5.3.4)
now includes both photons and neutrinos. We shall see later, in Chapter 8, that

K0 = 1+ 7
8(

4
11)

4/3Nν � 1+ 0.227Nν, (5.6.2)

with Nν the number of types of light neutrino; K0 � 1.68 if Nν = 3. The second
part of K0 derives from the neutrinos, and differs from the photon contribution
because they are fermions. The matter component is simply written Ω0 in Equa-
tion (5.6.1).
In light of Section 5.3, we can now calculate the equivalence redshift, zeq, at

which ρm = K0ρr = ρeq. The result is

ρeq = ρm(zeq) = ρ0cΩ0(1+ zeq)3 = K0ρr(zeq) = K0ρ0r(1+ zeq)4, (5.6.3)

from which we obtain

1+ zeq = ρ0cΩ0

K0ρ0r
= Ω−1

0r K
−1
0 Ω0 � 2.6× 104Ω0h2 (5.6.4)
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if Nν = 3. In and before the lepton era, Equation (5.6.1) is replaced by

(
ȧ
a0

)2
= H2

0

[
Ω0
a0
a

+Ω0rKc
(
a0
a

)2
+ (1−Ω0)

]
� H2

0ΩrKc
(
a0
a

)2
; (5.6.5)

the approximation on the right-hand side holds for z = a0/a � zeq � 1. The
factor Kc(z) takes account of the creation of pairs of higher and higher mass, as
we discussed in Section 5.4. As we shall see in Chapter 8, Kc is not expected to be
much bigger than K0. A good approximation for the period following the lepton
era and before decoupling is therefore obtained by using Equation (5.6.5) with
Kc(z) � K0: (

ȧ
a0

)2
� H2

0Ω0rK0
(
a0
a

)2
. (5.6.6)

For redshifts z� (Ω0rK0)−1 � zeq this equation gives

t(z) � 1

2H0Ω
1/2
0r K

1/2
0

(1+ z)−2 � 3.2× 1019K−1/2
0 (1+ z)−2 s. (5.6.7)

Extrapolating Equation (5.6.7) to zeq (where in fact it is only marginally valid), one
obtains

teq = t(zeq) � 104(Ω0h2)−2 years. (5.6.8)

At much later times, in the interval between z  zeq and 1 + z � Ω−1
0 , Equa-

tion (5.6.1) is well approximated by

(
ȧ
a0

)2
� H2

0Ω0
a0
a
. (5.6.9)

In this period it is a good approximation to use Equation (2.4.8), from which we
get

t(z)− teq � 2

3H0Ω
1/2
0

[(1+ z)−3/2 − (1+ zeq)−3/2]. (5.6.10)

For t� teq, and therefore for z zeq, Equation (5.6.10) can be written

t(z) � 2

3H0Ω
1/2
0

(1+ z)−3/2 � 2.1× 1017Ω−1/2
0 h−1(1+ z)−3/2 s. (5.6.11)

If the recombination redshift, zrec, is of order 103, which we shall argue is indeed
the case in Chapter 10, it will be lower than that of matter–radiation equivalence
as long as Ω0h2 > 0.04. The previous expression gives the recombination time as

trec = t(zrec) � 3× 105 years. (5.6.12)

The age of the Universe, t0, can be obtained by integrating Equation (5.6.1) from
the Big Bang (t = 0) to the present epoch. This integral can be divided into two
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contributions: from the Big Bang until teq, and from teq to t0. Given that zeq � 1
and, therefore, that teq  t0, the former contribution is negligible compared with
the second. It is therefore a good approximation to calculate t0 by putting Ωr = 0
in Equation (5.6.1) and taking the lower limit of integration to be t = 0. One will
thus obtain the values derived in Section 2.4 for the age of a matter-dominated
universe.

Bibliographic Notes on Chapter 5

The material in this chapter is very well established. The main results are dis-
cussed in Peebles (1971, 1993) and Weinberg (1972). A nice review article of ret-
rospective interest is given by Harrison (1973).

Problems

1. The result (5.1.7) is obtained for photons by integrating over the Planck distribution
appropriate for bosons. In the case of neutrinos (or other fermions), show that the
number-density in thermal equilibrium at a temperature T0ν is

n0ν = 3
ζ(3)
2π2

(
kBT0r

�c

)3
.

2. The Friedmann Equation (5.6.1) describing the evolution of a Universe containing
only non-relativistic matter and photons can be written

(
ȧ
a0

)2
= H2

0

[
Ω0
a0
a

+Ω0r

(
a0
a

)2
+ (1−Ω0 −Ω0r)

]
.

Show that for any choice of Ω0 < 1 there is a value of Ω0r that makes the right-hand
side a perfect square of a function of a. Obtain an exact solution for a(t) in such a
case.

3. Show that, in a flat radiation-dominated Universe, the radiation temperature varies
with time t as

T = At−1/2,
and obtain an expression for A in terms of physical quantities. Use your result to
estimate the temperature at t = 1 second after the Big Bang.



6

The Very Early
Universe

6.1 The Big Bang Singularity

Aswe explained in Chapter 2, all homogeneous and isotropic cosmological models
containing perfect fluids of equation of state p = wρc2, with 0 � w � 1, possess
a singularity at t = 0 where the density diverges and the proper distance between
any two points tends to zero. This singularity is called the Big Bang. Its existence is
a direct consequence of four things: (i) the Cosmological Principle; (ii) the Einstein
equations in the absence of a cosmological constant; (iii) the expansion of the
Universe (in other words, (ȧ/a)0 = H0 > 0); and (iv) the assumed form of the
equation of state.
It it clear that the Big Bang might well just be a consequence of extrapolating

deductions based on the theory of general relativity into a situation where this
theory is no longer valid. Indeed, Einstein (1950) himself wrote:

The theory is based on a separation of the concepts of the gravitational
field and matter. While this may be a valid approximation for weak
fields, it may presumably be quite inadequate for very high densities
of matter. One may not therefore assume the validity of the equations
for very high densities and it is just possible that in a unified theory
there would be no such singularity.

We clearly need new laws of physics to describe the behaviour of matter in the
vicinity of the Big Bang, when the density and temperature are much higher than
can be achieved in laboratory experiments. In particular, any theory of matter
under such extreme conditions must take account of quantum effects on a cos-
mological scale. The name given to the theory of gravity that replaces general



120 The Very Early Universe

relativity at ultra-high energies by taking these effects into account is quantum
gravity. We are, however, a very long way from being able to construct a satisfac-
tory theory to accomplish this. It seems likely, however, that in a complete theory
of quantum gravity, the cosmological singularity would not exist. In other words,
the existence of a singularity in cosmological models based on the classical the-
ory of general relativity is probably just due to the incompleteness of the theory.
Moreover, there are ways of avoiding the singularity even without appealing to
explicitly quantum-gravitational effects and remaining inside Einstein’s theory of
gravity.
Firstly, one could try to avoid the singularity by proposing an equation of state

for matter in the very early Universe that is different to the usual perfect fluid
with p/ρ > −1

3 . Let us begin by writing down Equation (1.10.3):

ä = −4
3πG

(
ρ + 3

p
c2

)
a. (6.1.1)

Recall that, if we have a perfect fluid satisfying

p < −1
3ρc

2, (6.1.2)

then the argument we gave in Section 2.1 based on the concavity of a(t) is no
longer valid and the singularity can be avoided. Fluids with w < −1

3 in this way
are said to violate the strong energy condition. There are various ways in which
this condition might indeed be violated. For example, suppose we describe the
contents of the Universe as an imperfect fluid, that is one in which viscosity and
thermal conductivity are not negligible. The energy momentum tensor of such a
fluid is no longer of the form (1.9.2); it must contain dependences on the coef-
ficient of shear viscosity η, the coefficient of bulk viscosity ζ, and the thermal
conductivity χ. The physical significance of the first two of these coefficients can
be recognised by looking at the equation of motion (Euler equation) for a non-
relativistic fluid neglecting self-gravity:

ρ
[
∂v
∂t

+ (v · ∇)v
]
= −∇p + η∇2v + (ζ + 1

3η)∇(∇ · v). (6.1.3)

One can demonstrate that in a Robertson–Walker metric the terms in η and χ
must be zero because of homogeneity and isotropy: there can be no gradients in
pressure or temperature. The terms in the bulk viscosity, however, need not be
zero: their effect upon the Friedmann equations is to replace the pressure p by
an ‘effective’ pressure p∗:

p → p∗ = p − 3ζ
ȧ
a
, (6.1.4)

for which the energy–momentum tensor becomes

Tij = −
(
p − 3ζ

ȧ
a

)
gij +

(
p − 3ζ

ȧ
a
+ ρc2

)
UiUj. (6.1.5)
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The resulting Equation (6.1.1) does not change in form, but one must replace
p by p∗. Generally speaking, the bulk viscosity is expected to be negligible in
non-relativistic fluids as well as ultra-relativistic ones. It need not be small in
the intermediate regime, such as one obtains if there is a mixture of relativistic
and non-relativistic fluids. With an appropriate expression for ζ (for example
ζ = α∗ρ, with α∗ = const. > 0, or ζ = const. > 0), one can obtain homogeneous
and isotropic solutions to the Einstein equations that do not possess a singularity.
In general, however, ζ has to be very small but non-zero; it is not trivial to come
up with satisfactory models in which bulk viscosity is responsible for the absence
of a singularity.
The Big Bang does not exist in many models with a non-zero cosmological con-

stant, Λ > 0. As we shall see, the present value of Λ can be roughly bounded
observationally

|Λ| <
(
H0

c

)2
� 10−55 cm−2, (6.1.6)

which is very small. The effect of such a cosmological constant at very early times
would be very small indeed, since its dynamical importance increases with time.
A more realistic option is to interpret the cosmological constant as an effective
quantity related to the vacuum energy density of a quantum field; this can be a
dynamical quantity and may therefore have been more important in the past than
a true cosmological constant. For example, as we shall see in Chapter 7 when
we discuss inflation, it is possible that the dynamics of the very early Universe is
dominated by a homogeneous and isotropic scalar quantum field whose evolution
is governed by the effective classical Lagrangian

LΦ = 1
2 Φ̇

2 − V(Φ), (6.1.7)

where the first term is ‘kinetic’ and the second is the ‘effective potential’. To sim-
plify Equation (6.1.7) and the following expressions, we have now adopted units
in which c = � = 1. The energy–momentum tensor for such a field is

Tin(Φ) = −pΦgij + (pΦ + ρΦc2)UiUj, (6.1.8)

where the ‘energy-density’ ρΦc2 and the ‘pressure’ pΦ are to be interpreted as
effective quantities (the scalar field is not a fluid), and are given by

ρΦc2 = 1
2 Φ̇

2 + V(Φ), (6.1.9a)

pΦ = 1
2 Φ̇

2 − V(Φ). (6.1.9b)

In particular, if the kinetic term is negligible with respect to the potential term,
the effective equation of state for the field becomes

pΦ � −ρΦc2. (6.1.10)
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The scalar field can therefore be regarded as behaving like a fluidwith an equation-
of-state parameter w = −1 (thus violating the strong energy condition) or as an
effective cosmological constant

Λ = 8πG
c2
ρΦ. (6.1.11)

The density ρΦ is zero or at least negligible today, but could have been the dom-
inant dynamical factor in certain phases of the evolution of the Universe. It may
also have been important in driving an epoch of inflation; see Chapter 7.
Whether the singularity is avoidable or not remains an open question, as does

the question of what happens to the Universe for t < 0. It is reasonable to call
this question the problem of the origin of the Universe: it is one of the big gaps
in cosmological knowledge; some comments about the possible physics of the
creation of the Universe are discussed in Sections 6.4 and 6.5.

6.2 The Planck Time

We have already mentioned that the theory of general relativity should be modi-
fied in situations where the density tends to infinity, in order to take account of
quantum effects on the scale of the cosmological horizon. In fact, Einstein himself
believed that his theory was incomplete in this sense and would have to be modi-
fied in some way. When do we expect quantum corrections to become significant?
Of course, in the absence of a complete theory (or indeed any theory) of quantum
gravity, it is impossible to give a precise answer to this question. On the other
hand, one can make fairly convincing general arguments that yield estimates of
the timescales and energy scales where we expect quantum gravitational effects to
be large and where we should therefore distrust calculations based only upon the
classical theory of general relativity. As we shall now explain, the limit of validity
of Einstein’s theory in the Friedmann models is fixed by the Planck time which is
of the order of 10−43 s after the Big Bang.
The Planck time tP is the time for which quantum fluctuations persist on the

scale of the Planck length lP � ctP. From these two scales one can construct a
Planck mass, mP � ρPl3P, where the Planck density ρP is of the order of ρP �
(Gt2P)−1 (from the Friedmann equations). Starting from theHeisenberg uncertainty
principle, in the form

∆E∆t � �, (6.2.1)

we see that, on dimensional grounds,

∆E∆t �mPc2tP � ρP(ctP)3c2tP � c
5t4P
Gt2P

� �, (6.2.2)

from which

tP �
(

�G
c5

)1/2
� 10−43 s. (6.2.3)
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Other quantities related to the Planck time are the Planck length,

lP � ctP �
(
G�

c3

)1/2
� 1.7× 10−33 cm, (6.2.4)

which represents the order of magnitude of the cosmological horizon at t = tP;
the Planck density

ρP � 1

Gt2P
� c5

G2�
� 4× 1093 g cm−3; (6.2.5)

the Planck mass (roughly speaking the mass inside the horizon at tP)

mP � ρPl3P �
(

�c
G

)1/2
� 2.5× 10−5 g. (6.2.6)

Let us also define an effective number-density at tP by

nP � l−3P � ρP
mP

�
(
c3

G�

)3/2
� 1098 cm−3, (6.2.7)

a Planck energy

EP �mPc2 �
(

�c5

G

)1/2
� 1.2× 1019 GeV, (6.2.8)

and a Planck temperature

TP � EPkB �
(

�c5

G

)1/2
k−1B � 1.4× 1032 K. (6.2.9)

The last relation can also be found by putting

ρPc2 � σT 4P . (6.2.10)

The dimensionless entropy inside the horizon at the Planck time takes the value

σP � ρPc
2l3P

kBTP
� 1, (6.2.11)

which reinforces the point that there is, on average, one ‘particle’ of Planck mass
inside the horizon at the Planck time. It is important to note that all these quan-
tities related to the Planck time can be derived purely on dimensional grounds
from the fundamental physical constants c, G, kB and �.

6.3 The Planck Era

In order to understand the physical significance of the Planck time, it is useful to
derive tP in the following manner, which ultimately coincides with the derivation
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we gave above. Let us define the Compton time for a body of massm (or of energy
mc2) to be

tC = �

mc2
; (6.3.1)

this quantity represents the time for which it is permissible to violate conservation
of energy by an amount ∆E � mc2, as deduced from the uncertainty principle.
For example one can create a pair of virtual particles of mass m for a time of
order tC. Let us also define the Compton radius of a body of massm to be

lC = ctC = �

mc
. (6.3.2)

Obviously tC and lC both decrease asm increases. These scales are indicative of
quantum physics.
On the other hand the Schwarzschild radius of a body of massm is

lS = 2Gm
c2

; (6.3.3)

this represents, to order of magnitude, the radius which a body of massm must
have so that its rest-mass energymc2 is equal to its internal gravitational potential
energy U � Gm2/lS. General relativity leads to the conclusion that any particle
(even a photon) cannot escape from a region of radius lS around a body of mass
m; in other words, speaking purely in terms of classical mechanics, the escape
velocity from a body of mass m and radius lS is equal to the velocity of light:
c2/2 = Gm/lS. Notice, however, that in the latter expression we have taken the
‘kinetic energy’ per unit mass of a photon to be c2/2 as if it were a non-relativistic
material. It is curious that the correct result emerges with these approximations.
One can similarly define a Schwarzschild time to be the quantity

tS = lSc = 2Gm
c3

; (6.3.4)

this is simply the time taken by light to travel a proper distance lS. A body of mass
m and radius lS has a free-fall collapse time tff � (Gρ)−1/2, where ρ �m/l3S, which
is of order tS. Notice that tS and lS both increase, asm increases.
One can easily verify that for a mass equal to the Planck mass, the Compton and

Schwarzschild times are equal to each other, and to the Planck time. Likewise, the
relevant length scales are all equal. For massesm >mP, that is to saymacroscopic
bodies, we have tC < tS and lC < lS: quantum corrections are expected to be
negligible in the description of the gravitational interactions between different
parts of the body. Here we can describe the self-gravity of the body using general
relativity or even, to a good approximation, Newtonian theory. On the other hand,
for bodies withm <mP, i.e. microscopic entities such as elementary particles, we
have tC > tS and lC > lS: quantum corrections will be important in a description
of their self-gravity. In the latter case, one must use a theory of quantum gravity
in place of general relativity or Newtonian gravity.
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At the cosmological level, the Planck time represents the moment before which
the characteristic timescale of the expansion τH ∼ t is such that the cosmological
horizon, given roughly by lP, contains only one particle (see above) having lC � lS.
On the same grounds, as above, we are therefore required to take into account
quantum effects on the scale of the cosmological horizon.
It is also interesting to note the relationship between the Planck quantities given

in Section 6.2 to known thermodynamical properties of black holes (Thorne et
al . 1986). According to theory, a black hole of mass M , due to quantum effects,
emits radiation like a black body called Hawking radiation. The typical energy of
photons emitted by the black hole is of order ε � kBT , where T is the black-body
temperature given by the relation

T = �c3

4πkBGM
� 10−7

(
M
M�

)−1
K. (6.3.5)

The time needed for such a black hole to completely evaporate, i.e. to lose all its
rest-mass energy Mc2 through such radiation, is of the order of

τ � G
2M3

�c4
� 1010

(
M

1015 g

)3
years. (6.3.6)

It is easy to verify that, if one extrapolates these formulae to the Planck mass
mP, the result is that ε(mP) � mPc2 and τ(mP) � tP. A black hole of mass mP

therefore evaporates in a single Planck time tP by the emission of one quantum
particle of energy EP.
These considerations show that quantum-gravitational effects are expected to

be important not only at a cosmological level at the Planck time, but also contin-
uously on a microscopic scale for processes operating over distances of order lP
and times of order tP. In particular, the components of a space–time metric gik
will suffer fluctuations of order |∆gik/gik| � lP/l � tP/t on a spatial scale l and
a temporal scale t. At the Planck time, the fluctuations are of order unity on the
spatial scale of the horizon, which is lP, and on the timescale of the expansion,
which is tP. One could imagine the Universe at very early times might behave like
a collection of black holes of massmP, continually evaporating and recollapsing
in a Planck time. This picture is very different from the idealised, perfect-fluid
universe described by the Friedmann equations, and it would not be surprising
if deductions from these equations, such as the existence of a singularity were
found to be invalid in a full quantum description.
Before moving on to quantum gravity itself, let us return for a moment to the

comments we made above about the creation of virtual particles. From the quan-
tum point of view, a field must be thought of as a flux of virtual pairs of particles
that are continually created and annihilated. As we explained above, the time for
which a virtual particle of massm can exist is of order the Compton time tC, and
the distance it moves before being annihilated is therefore the Compton length,
lC.
In an electrostatic field the two (virtual) particles, being charged, can be sepa-

rated by the action of the field because their electrical charges will be opposite. If
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the separation achieved is of order lC, there is a certain probability that the pair
will not annihilate. In a very intense electrical field, one can therefore achieve a
net creation of pairs. From an energetic point of view, the rest-mass energy of
the pair ∆E � 2mc2 will be compensated by a loss of energy of the electric field,
which will tend to be dissipated by the creation of particles. Such an effect has
been described theoretically, and can be observed experimentally in the vicinity
of highly charged, unstable nuclei.
A similar effect can occur in an intense, non-uniform gravitational field. One

creates a pair of particles (similar to the process by which black holes radiate par-
ticles). In this case, separation of the particles does not occur because of oppo-
site charges (the gravitational ‘charge’, which is the mass, is always positive), but
because the field is not uniform. One finds that the creation of particles in this
way can be very important, for example, if the gravitational field varies strongly in
time, as is the case in the early stages of the expansion of the Universe, above all
if the expansion is anisotropic. Some have suggested that such particle creation
processes might be responsible for the origin of the high entropy of the Universe.
The creation of pairs will also tend to isotropise the expansion.

6.4 Quantum Cosmology

We have explained already that there is no satisfactory theory of quantum gravity,
and hence no credible formulation of quantum cosmology. The attempt to find
such a theory is technically extremely complex and somewhat removed from the
main thrust of this book, so here is not the place for a detailed review of the field.
What we shall do, however, is to point out aspects of the general formulation of
quantum cosmology to give a flavour of this controversial subject, and to give
some idea where the difficulties lie. The reader is referred to the reference list for
more technical details.
The central concept in quantum mechanics is that of the wavefunction. To give

the simple example of a single-particle system, one looks atψ(x, t). Although the
interpretation ofψ is by no means simple, it is generally accepted that the square
of the modulus of ψ (for ψ will in general be a complex function) determines the
probability of finding the particle at position x at time t. One popular formulation
of quantum theory involves the concept of a ‘sum over histories’. In this formula-
tion, the probability of the particle ending up at x (at some time t) is given by an
integral over all possible paths leading to that space–time location, weighted by
a function depending on the action, S(x, t), along the path. Each path, or history,
will be a function x(t), so that x specifies the intersection of a given history with
a time-like surface labelled by t. In fact, one takes

ψ(x, t)∝
∫
dx dt exp[iS(x′, t′)], (6.4.1)

where the integration is with respect to an appropriate measure on the space of all
possible histories. The upper limit of integration will be the point in space–time
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given by (x, t), and the lower limit will depend on the initial state of the system.
The action describes the forces to which the particle is subjected.
This ‘sum-over-histories’ formalism is the one which appears the most promis-

ing for the study of quantum gravity. Let us illustrate some of the ideas by looking
at quantum cosmology. To make any progress here one has to make some sim-
plifying assumptions. First, we assume that the Universe is finite and closed: the
relevant integrals appear to be undefined in an open universe. We also have to
assume that the spatial topology of the Universe is fixed; recall that the topology
is not determined in general relativity. We also assume that the relevant ‘action’
for gravity is the action of general relativity we discussed briefly in Chapters 1
and 3, which we here write as SE.
In fact, as an aside, we should mention that this is one of the big deficiencies in

quantum gravity. There is no choice for the action of space–time coupled tomatter
fields which yields a satisfactory quantum field theory judged by the usual local
standards of renormalisability and so on. There is no reason why the Einstein
action SE should keep its form as one moves to higher and higher energies. For
example, it has been suggested that the Lagrangian for general relativity might
pick up terms of higher order in the Ricci scalar R, beyond the familiar L ∝ R.
Indeed, second-order Lagrangian theories with L = −R/(16πG)+αR2 have proved
to be of considerable theoretical interest because they can be shown to be con-
formally equivalent to general relativity with the addition of a scalar field. Such
a theory could well lead to inflation (see Chapter 7 below), but would also vio-
late the conditions necessary for the existence of a singularity. Some alternative
cosmological scenarios based on modified gravitational Lagrangians have been
discussed in Chapter 3. Since, however, we have no good reason in this context to
choose one action above any other, we shall proceed assuming that the classical
Einstein action is the appropriate one to take.
To have any hope of formulating cosmology in a quantum manner, we have

to first think of the appropriate analogue to a ‘history’. Let us simplify this even
further by dealing with an empty universe, i.e. one in which there are no matter
or radiation fields. It is perhaps most sensible to think of trying to determine a
wavefunction for the configuration of the Universe at a particular time, and in
general relativity the configuration of such a Universe will be simply given by
the 3-geometry of a space-like hypersurface. Let this geometry be described by
a 3-metric hµν(x). In this case, the corresponding quantity to a history x(t) is
just a (Lorentzian) 4-geometry, specified by a 4-metric gij , which induces the 3-
geometry hµν on its boundary. In general relativity, the action depends explicitly
on the 4-metric gij so it is clear that, when we construct an integral by analogy
with (6.4.1), the space over which it is taken is some space of allowed 4-geometries.
The required wavefunction will then be a function of hµν(x) and will be given by
an integral of the form

Ψ[hµν(x)] =
∫
dgij exp[iS(gij)]. (6.4.2)

The wavefunction Ψ is therefore defined over the space of all possible 3-
geometries consistent with our initial assumptions (i.e. closed and with a fixed
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topology). Such a space is usually called a superspace. To include matter in this
formulation then one would have to write Ψ[hµν,Φ], where Φ labels the matter
field at x. Notice that, unlike (6.4.1), there is no need for an explicit time labelling
beside hµν in the argument of Φ: a generic 3-geometry will actually only fit into a
generic 4-geometry in at most only one place, so hµν carries its own labelling of
time. The integral is taken over appropriate 4-geometries consistent with the 3-
geometry hµν . The usual quantum-mechanical wavefunction ψ evolves according
to a Schrödinger equation; our ‘wavefunction of the Universe’, Ψ , evolves accord-
ing to a similar equation called the Wheeler–de Witt equation (de Witt 1967). It is
the determination of what constitutes the appropriate set of histories over which
to integrate that is the crux of the problem and it is easy to see that this is nothing
other than the problem of initial conditions in quantum cosmology (by analogy
with the single-particle problemdiscussed above). This problem is far from solved.
One suggestion, by Hartle and Hawking (1983), is that the sum on the right-hand

side of (6.4.2) is over compact Euclidean 4-geometries. This essentially involves
making the change t → −iτ with respect to the usual Lorentzian calculations.
In this case the 4-geometries have no boundary and this is often called the no-
boundary conjecture. Amongst other advantages, the relevant Euclidean integrals
can be made to converge in a way in which the Lorentzian ones apparently cannot.
Other choices of initial condition have, however, been proposed. Vilenkin (1984,
1986), amongst others, has proposed a model wherein the Universe undergoes a
sort of quantum-tunnelling from a vacuum state. This corresponds to a definite
creation, whereas the Hawking proposal has no ‘creation’ in the usual sense of
the word. It remains to be seen which, if any, of these formulations is correct.

6.5 String Cosmology

Recent years have seen a radically different approach to the problem of quantum
gravity which has led to a different idea of the possible structure of a quantum
gravity theory. One of the most exciting ideas is that the fundamental entities
upon which quantum operations must be performed are not point-like but are
one dimensional. Such objects are usually known as strings, or more often super-
strings (because they are usually discussed within so-called supersymmetric the-
ories that unite fermions and bosons; see Chapter 8). Many physicists feel that
string theory holds the key to the unification of all four forces of nature (gravity
included) in a single over-arching theory of everything. Such a theory does not yet
exist, but there is much interest in what its possible consequences might be.
String cosmology entered the doldrums in the early 1990s after a period of

initial excitement. However it has since seen a resurgence largely because of the
realisation that string theories can be thought of in terms of a more general class
of theories known as M-theories. It is a property of all these structures that in
order to bemathematically consistent they must be defined in space–times having
more dimensions than the (3+1)-dimensional one with which we are familiar. One
of the consequences of such theories is that fundamental constants ‘live’ in the
higher-dimensional space and can vary in the 4-dimensional subspace we inhabit.
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They therefore lead naturally to models like those we discussed in Chapter 3 in
which fundamental constants may vary with time.
The idea that there may be more than four space–time dimensions is not itself

new. Kaluza (1921) and Klein (1926) examined a (4+1)-dimensional model which
furnished an intriguing geometrical unification of gravity and electromagnetism.
In the Kaluza–Klein theory the extra space dimension was compactified on a scale
of order the Planck length, i.e. wrapped up so small as to be unobservable.
String theories have to hide many dimensions, not just one, and until recently

it was assumed that they would all have to be compactified. However, a radi-
cally new idea is called the braneworld scenario in which at least one of the extra
dimensions might be large. In this picture we are constrained to live on a three-
dimensional brane inside a higher-dimensional space called the bulk. Gravity is
free to propagate in the bulk, and the gravity we see on the brane is a kind of
projection of this higher-dimensional force. In the simplest braneworld model,
known as the Randall–Sundrum model (Randall and Sundrum 1999) this theory
results in amodification of the low-energy form of gravity such that the Newtonian
potential becomes

V(r) = GM1M2

r 2

(
1+ 1

r 2k2

)
, (6.5.1)

where k corresponds to a very small length scale, of order the Planck length. At
higher energies, however, there are interesting effects. In a particular case of the
Randall–Sundrum model the high-energy behaviour of the Friedmann equation is
modified: (

ȧ
a

)2
= 8πG

3

(
ρ + ρ

2

2λ

)
, (6.5.2)

where λ is the tension in the brane.
A further development of the braneworld scenario is the notion that what we

think of as the Big Bang singularity may in fact be the result of a collision between
two branes. This has been dubbed the Ekpyrotic universe. Interest in this model
stems from the fact that the impact of two branes may lead to effects that appear
to be acausal when viewed from one of them. It remains to be seen whether this
model can be developed to the point where it stands as a rival to the Big Bang.

Bibliographic Notes on Chapter 6

Two classic compilations on fundamental gravity theory are Hawking and Israel
(1979, 1987). Duff and Isham (1982) is also full of interesting thoughts on quan-
tum gravity, and Hartle (1988) is readable as well as authoritative.

Problems

1. In natural units � = c = 1. Show that in such a system all energies, lengths and
times can be expressed in terms of the Planck massmP.
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2. Show that, in natural units, an energy density may be expressed as the fourth power
of a mass. If the vacuum energy contributed by a cosmological constant is now of
order the critical density, what is the mass to which this density corresponds?

3. Obtain a formula relating the Hawking temperature (6.3.5) to the radius of the event
horizon of a Black Hole. In a de Sitter universe the scale factor increases exponen-
tially with time such that ȧ/a = H is constant. Show that in this model there is an
event horizon with radius c/H. Assuming the Hawking formula also works for this
radius, calculate the temperature of the event horizon in de Sitter space. How do
you interpret this radiation?

4. Find a solution of Equation (6.5.2) with λ constant.
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Phase
Transitions
and Inflation

7.1 The Hot Big Bang

We shall see in the next chapter that, if cosmological nucleosynthesis is the correct
explanation for the observed light-element abundances, the Universe must have
been through a phase in which its temperature was greater than T � 1012 K. In
this chapter we shall explore some of the consequences for the Universe of phases
of much higher temperature than this. Roughly speaking, we can define ‘Hot’ Big
Bang models to be those in which the temperature increases as one approaches
t = t0. We assume that, after the Planck time, the temperature follows the law:

T(t) � TPa(tP)a(t)
; (7.1.1)

we shall give detailed justification for this hypothesis later on.
Travelling backward in time, so that the temperature increases towards TP, the

particles making up the contents of the present Universe will all become relativis-
tic and all the interactions between them assume the character of a long-range
force such as electromagnetism. One can apply the model of a perfect ultra-
relativistic gas of non-degenerate (i.e. with chemical potential µ = 0) particles
in thermal equilibrium during this stage. The equilibrium distribution of a par-
ticle species i depends on whether it is a fermionfermions or a boson and upon
how many spin or helicity states the particle possesses, gi. The quantity gi is also



132 Phase Transitions and Inflation

sometimes called the statistical weight of the species i. The number-density of
particles can be written

ni(T) = gi
(
kBT
�c

)3 ∫∞

0

x2 dx
ex ± 1

=
(
3/4
1

)
gi
2

2
π2
ζ(3)

(
kBT
�c

)3
, (7.1.2)

where the integrand includes a ‘+’ sign for fermions and a ‘−’ sign for bosons
producing a factor of 3

4 or 1 in these respective cases. In (7.1.2) ζ is the Riemann
zeta function which crops up in the integral; ζ(3) � 1.202. Similarly, the energy
density of the particles is

ρi(T)c2 = gik4BT 4

2π2�3c3

∫∞

0

x2 dx
exp(x)± 1

=
(
7/8
1

)
gi
2
σrT 4, (7.1.3)

in which we have used the definition of the radiation density constant σr. The
total energy density is therefore given by

ρ(T)c2 =
(∑

B

giB + 7
8

∑
F
giF
)
σrT 4

2
= g∗(T)σrT

4

2
, (7.1.4)

in which B stands for bosons and F for fermions; the sums are taken over all
the bosons and fermions with their respective statistical weights giB and giF. The
quantity g∗(T) is called the effective number of degrees of freedom. To obtain
the total density of the Universe one must add the contribution ρd(T), coming
from those particles which are no longer in thermal equilibrium (i.e. those which
have decoupled from the other particles, such as neutrinos after their decoupling)
and the contribution ρnr(T), coming from those particles which are still coupled
but no longer relativistic, as is the case for the matter component in the plasma
era. There may also be a component ρnt(T) due to particles which are never in
thermal equilibrium with the radiation (e.g. axions). As we shall see, for the period
which interests us in this chapter, the contributions ρd(T), ρnr(T) and ρnt(T) are
generally negligible compared with ρ(T).
The number-densities corresponding to each degree of freedom (spin state) of

a boson, nB, and fermionfermions, nF, are

nB = 4
3nF =

ζ(3)
π2

(
kBT
�c

)3
� ρBc2

3kBT
� ρFc2

3kBT
. (7.1.5)

As we shall see later, g∗(T) < 200 or so. This means that the average separation
of the particles is

d̄ � [g∗(T)nB]−1/3 � n−1/3
B � �c

kBT
, (7.1.6)

so that d̄ practically coincides with the ‘thermal wavelength’ of the particles,
�c/kBT , which is in some sense analogous to the Compton radius.
The cross-section of all the particles is, in the asymptotic limit T → TP,

σa � α2
(

�c
kBT

)2
, (7.1.7)
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with α of the order of 1/50, so that the collision time is

τcoll � 1
nσac

� �

g∗(T)α2kBT
. (7.1.8)

This time is to be compared with the expansion timescale τH = a/ȧ:

τH = 2t �
(

3
32πGρ

)1/2
� 0.3�TP
g∗(T)1/2kBT 2

� 2.42× 10−6

g∗(T)1/2

(
T

1 GeV

)−2
s (7.1.9)

(note that 1 GeV � 1.16× 1013 K). We therefore have

τcoll
τH

� 1
g∗(T)1/2α2

T
TP

 1. (7.1.10)

The hypothesis of thermal equilibrium is consequently well founded.
One can easily verify that the assumption that the particles behave like a perfect

gas is also valid. Given that asymptotically all the interactions are, so to speak,
equivalent to electromagnetism with the same coupling constant, one can verify
this hypothesis for two electrons: the ratio r between the kinetic energy, Ec � kBT ,
and the Coulomb energy, Ep � e2/d̄ (using electrostatic units), is, from Equa-
tion (7.1.4),

r � d̄kBT
e2

� �c
e2

� 137� 1 : (7.1.11)

to a good approximation r is the inverse of the fine-structure constant.
In Equations (7.1.4) and (7.1.5) there is an implicit hypothesis that the particles

are not degenerate. We shall see in the next chapter that this hypothesis, at least
for certain particles, is held to be the case for reasonably convincing reasons.

7.2 Fundamental Interactions

The evolution of the first phases of the hot Big Bang depends essentially on the
physics of elementary particles and the theories that describe it. For this reason
in this section we will make some comments on interactions between particles. It
is known that there are four types of fundamental interactions: electromagnetic,
weak nuclear, strong nuclear and gravitational. As far as the first three of these are
concerned, quantum describes them in terms of the exchange of bosonic particles
which play the role of force carriers.
The electromagnetic interactions are described classically by Maxwell’s equa-

tions and in the quantum regime by quantum electrodynamics (QED). These forces
are mediated by the photon, a massless boson: this implies that they have a long
range. The coupling constant, a quantity which, roughly speaking, measures the
strength of the interaction, is given by gQED = e2/�c � 1/137. From the point
of view of group theory the Lagrangian describing electromagnetic interactions
is invariant under the group of gauge transformations denoted U(1) (by gauge
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transformation we mean a transformation of local symmetry, i.e. depending upon
space–time position).
In the standard model of particle physics the fundamental interacting objects

are all fermions, either quarks or leptons. There are three families of leptons in
this model, each consisting of a charged lepton and an associated neutrino. The
charged leptons include the electron e− but there are also µ− and τ− particles.
Each of these has an accompanying neutrino designated νe, νµ and ντ . The leptons
are therefore arranged in three families, each of which contains a pair of related
particles. There are also antiparticles of the charged leptons (i.e. e+, µ+, τ+), and
antineutrinos of each type (ν̄e, ν̄µ , ν̄τ ).
The other fundamental fermions are the quarks, which also occur in three fam-

ilies of pairs mirroring the leptons. Quarks have fractional electronic charge but
also possess a property known as colour which plays a role in strong nuclear reac-
tions. The six quarks are denoted ‘up’ (u), ‘down’ (d), ‘strange’ (s), ‘charmed’ (c),
‘bottom’ (b) and ‘top’ (t). Each quark comes in three different colours, red, green
and blue: these are denoted ur, ug, ub and so on. The three families are arranged
as (u,d), (s, c) and (b, t). There are also antiquarks for each quark (i.e. ū, d̄) pos-
sessing opposite electrical charge and also opposite colour. Note that ‘anti-up’ is
not the same thing as ‘down’!
Basic properties of the quarks and leptons are shown in Appendix A.
The weak nuclear interactions involve all particles, but are generally of most

interest when they involve the leptons. These interactions are of short range
because the bosons that mediate the weak nuclear force (called W+, W− and Z0)
have masses mW � 80 GeV and mZ0 � 90 GeV. It is the mass of this boson that
makes the weak interactions short range. The weak interactions can be described
from a theoretical point of view by a theory developed by Glashow, Salam and
Weinberg around 1970. According to this theory, the electromagnetic and weak
interactions are different aspects of a single force (the electroweak force) which,
for energies greater than EEW � 102 GeV, is described by a Lagrangian which is
invariant under the group of gauge transformations denoted SU(2)×U(1). At ener-
gies above EEW the leptons do not have mass and their electroweak interactions
are mediated by four massless bosons (W1, W2, W3, B), called the intermediate
vector bosons, with a coupling constant of order gQED. At energies lower than EEW
the symmetry given by the SU(2)× U(1) transformation group is spontaneously
broken; the consequence of this is that the leptons (except perhaps the neutri-
nos) and the three bosons acquire masses (W+, W− and Z0 can be thought of as
‘mixtures’ of quantum states corresponding to the W1, W2, W3 and B). The only
symmetry that remains is, then, the U(1) symmetry of electromagnetism.
The strong nuclear interactions involve above all the so-called hadrons. These

are composite particles made of quarks, and are themselves divided into two
classes: baryons and mesons. Baryons consist of combinations of three quarks
of different colours (one red, one green, one blue) in such a way that they are
colourless. Mesons are combinations of a quark and an anti-quark and are also
colourless. Familiar examples of hadrons are p, p̄, n, and n̄, while the most rele-
vant mesons are the pions π+, π−, π0. All hadronic states are described from a
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quantum point of view by a theory called quantum chromodynamics (QCD). This
theory was developed at a similar time to the theory which unifies the electromag-
netic and weak interactions and, by now, it has gained considerable experimental
support. According to QCD, hadrons are all made from quarks. There are various
types of quark. These have different weak and electromagnetic interactions. The
characteristic which distinguishes one quark from another is called flavour. The
role of the bosons in the electroweak theory is played by the gluons, a family of
eight massless bosons; the role of charge is replaced by a property of quarks and
gluons called colour. At energies exceeding of the order of 200–300 MeV quarks
are no longer bound into hadrons, and what appears is a quark–gluon plasma.
The symmetry which the strong interactions respect is denoted SU(3).
The success of the unification of electromagnetic and weak interactions (Wein-

berg 1967; Salam 1968; Georgi and Glashow 1974) by the device of a restoration of
a symmetry which is broken at low temperatures – i.e. SU(2)×U(1) – has encour-
aged many authors to attempt the unification of the strong interactions with
the electroweak force. These theories are called GUTs (Grand Unified Theories);
there exist many such theories and, as yet, no strong experimental evidence in
their favour. In these theories other bosons, the superheavy bosons (with masses
around 1015 GeV), are responsible formediating the unified force; the Higgs boson
is responsible for breaking the GUT symmetry. Amongst other things, such the-
ories predict that protons should decay, with a mean lifetime of around 1032–
1033 years; various experiments are in progress to test this prediction, and it is
possible that it will be verified or ruled out in the not too distant future. The sim-
plest version of a GUT respects the SU(5) symmetry group which is spontaneously
broken at an energy EGUT � 1015 GeV, so that SU(5) → SU(3) × SU(2) × U(1)
(even though the SU(5) version seems to be rejected on the grounds of the mean
lifetime of the proton, we refer to it here because it is the simplest model). For
a certain choice of parameters the original SU(5) symmetry breaks instead to
SU(4)×U(1) around 1014 GeV, which disappears around 1013 GeV giving the usual
SU(3)×SU(2)×U(1). The possible symmetry breaking occurs as a result of a first-
order phase transition (which we shall discuss in the next section) and forms the
basis of the first version of the inflationary universe model produced by Guth in
1981. It is, of course, possible that there ismore than one phase transition between
1015 GeV and 100 GeV. At energies above EGUT, in the simplest SU(5) model, the
number of particle types corresponds to g∗(T) � 160.
The fourth fundamental interaction is the gravitational interaction, which is

described classically by general relativity. We have discussed some of the lim-
itations of this theory in the previous chapter. The boson which mediates the
gravitational force is usually called the graviton. It is interesting in the context of
this chapter to ask whether we will ever arrive at a unification of all four interac-
tions. Some attempts to construct a theory unifying gravity with the other forces
involve the idea of supersymmetry ; an example of such a theory is supergravity.
This theory, amongst other things, unifies the fermions and bosons in a unique
multiplet. More recently, great theoretical attention has been paid to the idea of
superstrings, which we mentioned in the previous chapter. Whether these ideas
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will lead to significant progress towards a ‘theory of everything’ (TOE) remains an
open question.

7.3 Physics of Phase Transitions

In certain many-particle systems one can find processes which can involve,
schematically, the disappearance of some disordered phase, characterised by a
certain symmetry, and the appearance of an ordered phase with a smaller degree
of symmetry. In this type of order–disorder transition, called a phase transition,
some macroscopic quantity, called the order parameter and denoted by Φ in this
discussion, grows from its original value of zero in the disordered phase. The
simplest physical examples of materials exhibiting these transitions are ferro-
magnetic substances and crystallinematter. In ferromagnets, for T > Tc (the Curie
temperature), the stable phase is disordered with net magnetisation M = 0 (the
quantity M in this case represents the order parameter); at T < Tc a non-zero
magnetisation appears in different domains (called the Weiss domains) and its
direction in each domain breaks the rotational symmetry possessed by the disor-
dered phase at T > Tc. In the crystalline phase of solids the order parameter is
the deviation of the spatial distribution of ions from the homogeneous distribu-
tion they have at T > Tf, the melting point. At T < Tf the ions are arranged on a
regular lattice. One can also see an interesting example of a phase transition in
the superconductivity properties of metals.
The lowering of the degree of symmetry of the system takes place even though

the Hamiltonian which describes its evolution maintains the same degree of sym-
metry, even after the phase transition. For example, the macroscopic equations of
the theory of ferromagnetism and the equations in solid-state physics do not pick
out any particular spatial position or direction. The ordered states that emerge
from such phase transitions have a degree of symmetry which is less than that
governing the system. In fact, one can say that the solutions corresponding to
the ordered state form a degenerate set of solutions (solutions with the same
energy), which has the same degree of symmetry as the Hamiltonian. Returning
to the above examples, the magnetisationM can in theory assume any direction.
Likewise, the positioning of the ions in the crystalline lattice can be done in an infi-
nite number of different ways. Taking into account all these possibilities we again
obtain a homogeneous and isotropic state. Any small fluctuation, in the magnetic
field of the domain for a ferromagnet or in the local electric field for a crystal,
will pick out one preferred solution from this degenerate set and the system will
end up in the state corresponding to that fluctuation. Repeating the phase transi-
tion with random fluctuations will produce randomly aligned final states. This is
a little like the case of a free particle, described in Newtonian mechanics by v̇ = 0,
which has both translation and rotational symmetries. The solutions r = r0+v0t,
with r0 and v0 arbitrary, form a set which respects the symmetry of the original
equation. But it is really just the initial conditions r0 and v0 which, at one partic-
ular time, select a solution from this set and this solution does not have the same
degree of symmetry as that of the equations of motion.
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A symmetry-breaking transition, during which the order parameter Φ grows
significantly, can be caused by external influences of sufficient intensity: for
example, an intense magnetic field can produce magnetisation of a ferromag-
net even above Tc. Such phenomena are called induced symmetry-breaking pro-
cesses, to distinguish them from spontaneous symmetry breaking. The sponta-
neous breaking of a symmetry comes from a gradual change of the parame-
ters of the system itself. On this subject, it is convenient to consider the free
energy of the system F = U − TS (U is internal energy; T is temperature; S is
entropy). Recall that the condition for existence of an equilibrium state of a sys-
tem is that F must have a minimum. The free energy coincides with the inter-
nal energy only at T = 0. At higher temperatures, whatever the form of U , an
increase in entropy (i.e. disorder) generally leads to a decrease in the free energy
F , and is therefore favourable. For systems in which there is a phase transition,
F is a function of the order parameter Φ. Given that Φ must respect the symme-
try of the Hamiltonian of the system, it must be expressible in a manner which
remains invariant with respect to transformations which leave the Hamiltonian
itself unchanged. Under certain conditions F must have a minimum at Φ = 0
(disordered state), while in others it must have a minimum with Φ ≠ 0 (ordered
state).
Let us consider the simplest example. If the Hamiltonian has a reflection sym-

metry which is broken by the appearance of an order parameter Φ or, equivalently
in this case, −Φ, the free energy must be a function only of Φ2 (in this example Φ
is assumed to be a real, scalar variable). If Φ is not too large we can develop F in
a power series

F(Φ) � F0 +αΦ2 + βΦ4, (7.3.1)

where the coefficients α and β depend on the parameters of the system, such as
its temperature. For α > 0 and β > 0 we have a curve of the type marked ‘1’ in
Figure 7.1, while for α < 0 and β > 0 we have a curve of type ‘2’.
Curve 1 corresponds to a disordered state; the system is in the minimum at

Φ = 0. Curve 2 has two minima at Φm = ±(−α/2β)1/2 and a maximum at Φ = 0; in
this case the disordered state is unstable, while theminima correspond to ordered
states with the same probability: any small external perturbation, which renders
one of the two minima Φm slightly deeper or nudges the system towards it, can
make the system evolve towards this one rather than the other with Φ = −Φm.
In this way one achieves a spontaneous symmetry breaking. If there is only one
parameter describing the system, say the temperature, and the coefficient α is
written as α = a(T − Tc), with a > 0, we have a situation represented by curve 2
for T < Tc. While T grows towards Tc the order parameter Φ decreases slowly and
is zero at Tc. This type of transition, like its inverse, is called a second-order phase
transition and it proceeds by a process known as spinodal decomposition: the order
parameter appears or disappears gradually and the difference ∆F between T > Tc
and T < Tc at T � Tc is infinitesimal.
There are also first-order phase transitions, in which at T � Tc the order param-

eter appears or disappears rapidly and the difference ∆F is finite. This difference
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T > Tc

T < Tc

Φ

Figure 7.1 Free energy F of a systemwhich undergoes a spontaneous symmetry breaking
at a phase transition of second order in the order parameter Φ. The minimum of curve 1,
corresponding to a temperature T > Tc, represents the equilibrium disordered state; the
transition occurs at T = Tc; one of the two minima of curve 2, corresponding to the
temperature T < Tc, represents the equilibrium ordered state which appears after the
transition.

is called the latent heat of the phase transition. One would have this type of tran-
sition if, for example, in Equation (7.3.1) one added an extra term γ(Φ2)3/2, with
γ < 0, to the right-hand side. We now have the type of behaviour represented in
Figure 7.2: in this case F acquires two new minima which become equal or less
than F0 = F(0) for T � Tc.
In first-order phase transitions, when T changes from the situation represented

by curve 1 of Figure 7.2 to that represented by curve 3, the phenomenon of super-
cooling can occur: the system remains in the disordered state represented by
Φ = 0 even when T < Tc (state A); this represents a metastable equilibrium. As
T decreases further, or the system is perturbed by either internal or external
fluctuations, the system rapidly evolves into state B, which is energetically sta-
ble, liberating latent heat in the process. The system, still in the ordered state, is
heated again up to a temperature of order Tc by the release of this latent heat, a
phenomenon called reheating.

7.4 Cosmological Phase Transitions

The model of spontaneous symmetry breaking has been widely applied to the
behaviour of particle interactions in the theories outlined in Section 7.2. Because
phase transitions of this type appear generically in the early Universe according
to standard particle physics models, the initial stages of the Big Bang are often
described as the era of phase transitions. One important idea, which we shall refer
to later, is that we can identify the order parameterΦ with the value of some scalar
quantum field, most importantly the Higgs field at GUT scales, and the free energy
F can then be related to the effective potential describing the interactions of that
field, V(Φ). We shall elaborate on this in Sections 7.7 and 7.10.
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Figure 7.2 Free energyF of a system which undergoes a spontaneous symmetry breaking
at a phase transition of first order in the order parameter Φ. The absolute minimum of
curve 1, corresponding to a temperature T > Tc, represents the equilibrium disordered
state; the transition does not happen at T = Tc (curve 2), but at T < Tc, when the barrier
between the central minimum and the two others becomes negligible (curve 3).

The period from tP � 10−43 s, corresponding to a temperature TP � 1019 GeV, to
the moment at which quarks become confined in hadrons at T � 200–300 MeV,
can be divided into various intervals according to the phase transitions which
characterise them.

1. TP � 1019 GeV > T > TGUT � 1015 GeV. In this period quantum gravitational
effects become negligible and the particles are held in thermal equilibrium
for T � 1016 GeV by means of interactions described by a GUT. Thanks
to the fact that baryon number is not conserved in GUTs, any excess of
baryons over antibaryons can be removed at high energies; at T � 1015 GeV
the Universe is baryon-symmetric, i.e. quarks and antiquarks are equivalent.
It is possibly also the case that viscosity effects at the GUT scale can lead
to a reduction in the level of inhomogeneity of the Universe at this time. At
temperatures TGUT � 1015 GeV, corresponding to t � 10−37 s, we will take
the simplest GUT symmetry of SU(5).

2. T � 1015 GeV. At T � 1015 GeV there is a spontaneous breaking of the SU(5)
symmetry into SU(3) × SU(2) × U(1) or perhaps some other symmetry for
some intervening period. As we shall see in detail later, the GUT phase transi-
tion at TGUT results in the formation ofmagneticmonopoles: this is a problem
of the standard model which is discussed in Section 7.6 and which may be
solved by inflation, which is usually assumed to occur in this epoch. A GUT
which unifies the electroweak interactions with the strong interactions, puts
leptons and hadrons on the same footing and thus allows processes which
do not conserve baryon number B (violation of baryon number conservation
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is not allowed in either QCD or electroweak theory). It is thought therefore
that processes could occur at TGUT, which might create a baryon–antibaryon
asymmetry which is observed now in the form of the very large ratio nγ/nb,
as we explained in Section 5.5. In order to create an excess of baryons from a
situation which is initially baryon-symmetric at T > 1015 GeV, i.e. to realise
a process of baryosynthesis, it is necessary to have

(a) processes which violate B conservation;

(b) violation of C or CP symmetry (C is charge conjugation; P is parity
conjugation; violation of symmetry under these operations has been
observed in electroweak interactions), otherwise, for any process which
violates B-conservation, there would be another process with the same
rate happening to the anti-baryons and thus cancelling the net effect;

(c) processes which do violate B-conservation must occur out of equilib-
rium because a theorem of statistical mechanics shows that an equilib-
rium distribution with B = 0 remains so regardless of whether B, C and
CP are violated – this theorem shows that equilibrium distributions can-
not be modified by collisions even if the invariance under time-reversal
is violated.

It is interesting to note that the three conditions above, necessary for the
creation of a baryon–antibaryon asymmetry, were given by Sakharov (1966).
It seems that these conditions are valid at T � 1015 GeV, or slightly lower,
depending on the particular version of GUT or other theory; it is even the
case that baryosynthesis can occur at much lower energies, around the
electroweak scale. Even though this problem is complicated and therefore
rather controversial, with reasonable hypotheses one can arrive at a value
of baryon–antibaryon asymmetry of order 10−8–10−13, which includes the
observed value: the uncertainty here derives not only from the fact that one
can obtain baryosynthesis in GUTs of various types, but also that in any indi-
vidual GUT there are many free, or poorly determined, parameters. It is also
worth noting that, if the Universe is initially lepton-symmetric, the reactions
which violate B can also produce an excess of leptons over antileptons (equal
in the case of SU(5) GUTs to that of the baryons over the antibaryons). This
is simply because the GUTs unify quarks and leptons: this is one theoretical
motivation for assumption, which we shall make in the next chapter: that
the chemical potential for the leptons is very close to zero at the onset of
nucleosynthesis. Notice finally that in a GUT the value of the baryon asym-
metry actually produced depends only on microphysical parameters; this
means that, even if the Universe is inhomogeneous, the value of the asym-
metry should be the same in any region. Given that it is proportional to the
entropy per baryon σrad, it turns out that any inhomogeneity producedmust
be of adiabatic type (i.e. leaving σrad unchanged relative to an unperturbed
region). In some very special situations, which we shall not go into here, it
is possible however to generate isothermal fluctuations. We shall discuss
adiabatic and isothermal perturbations in much more detail in Chapter 12.
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3. TGUT > T > TEW. When the temperature falls below 1015 GeV, the unification
of the strong and electroweak interactions no longer holds. The superheavy
bosons rapidly disappear through annihilation or decay processes. In the
moment of symmetry breaking the order parameter Φ, whose appearance
signals the phase transition proper, can assume a different ‘sign’ or ‘direc-
tion’ in adjoining spatial regions: it is possible in this way to create places
where Φ changes rapidly with spatial position, as one moves between dif-
ferent regions, similar to the ‘Bloch walls’ which, in a ferromagnet, separate
the different domains of magnetisation. These ‘singular’ regions where Φ is
discontinuous have a structure which depends critically upon the symmetry
which has been broken; we shall return to this in Section 7.6. The period we
are discussing here lasts from tGUT � 10−37 s to tEW � 10−11 s: in logarithmic
terms this is a very long time indeed. It is probable that phase transitions
occur in this period which are not yet well understood. This corresponds
to an energy range from 100–1015 GeV; within the framework of the SU(5)
model discussed above there are no particles predicted to have masses in
this range of energies, which is, consequently, called the ‘grand desert’. Nev-
ertheless, there remain many unresolved questions regarding this epoch.
In any case, towards the end of this period one can safely say that, to a
good approximation, the Universe is filled with an ideal gas of leptons and
antileptons, the four vector bosons, quarks and antiquarks and gluons; in
all this corresponds to g∗ � 102. At the end of this period the size of the
cosmological horizon is around one centimetre and contains around 1019

particles.

4. TEW > T > TQH � 200–300 MeV. At T � 102 GeV there will be a spontaneous
breaking of the SU(2) × U(1) symmetry, through a phase transition which
is probably of first order but very weakly so. All the leptons acquire masses
(with the probable exception of the neutrinos) while the intermediate vec-
tor bosons give rise to the massive bosons W+, W− and Z0 and photons.
The massive bosons disappear rapidly through decay and annihilation pro-
cesses when the temperature falls below around 90 GeV. For a temperature
TQH � 200–300 MeV, however, we have a final phase transition in the frame-
work of QCD theory: the strong interactions do indeed become very strong
and lead to the confinement of quarks into hadrons, the quark–hadron phase
transition. There thus begins the (very short) hadron era, which we shall dis-
cuss in the next chapter. When the temperature reaches TQH, the cosmologi-
cal time is tQH � 10−5 s and the cosmological horizon is around a kilometre
in size.

7.5 Problems of the Standard Model

The standard model of the hot Big Bang is based on the following assumptions.

1. That the laws of physics which have been verified at the present time by
laboratory experiments are also valid in the early Universe (this does not
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include such theories as GUT, supersymmetry and the like which we refer
to as ‘new physics’) and that gravity is described by the theory of general
relativity without a cosmological constant.

2. That the Cosmological Principle holds.

3. That the appropriate ‘initial conditions’, which may in principle be predicted
by a more general theory, are that the temperature at some early time ti
is such that Ti > 1012 K and the contents of the Universe are in thermal
equilibrium, that there is (somehow) a baryon asymmetry consistent with
the observed value of σrad, that Ω(ti) is very close to unity (see below), and,
finally, that there is some spectrum of initial density fluctuations which give
rise to structure formation at late times.

This standard cosmology has achieved four outstanding successes:

1. the predictions of light-element abundances produced during cosmological
nucleosynthesis agree with observations, as we shall see in the next chapter;

2. the cosmic microwave background is naturally explained as a relic of the
initial ‘hot’ thermal phase;

3. it accounts naturally for the expansion of the Universe; and

4. it provides a framework within which one can understand the formation of
galaxies and other cosmic structures.

There remain, however, certain problems (or, at least, unexplained features)
connected with the Big Bang cosmology:

1. the origin of the Universe or, in less elevated language, the evolution of the
Universe before the Planck time;

2. the cosmological horizon, which we discuss below;

3. the question of why the Universe is close to being flat, again discussed below;

4. the baryosynthesis or, in other words, the origin of the baryon asymmetry;

5. the evolution of the Universe at energies greater than T > 100 GeV;

6. the origin of the primordial spectrum of density fluctuations, whatever it is;

7. the apparently ‘excessive’ degree of homogeneity and isotropy of the Uni-
verse; and

8. the nature of the ubiquitous dark matter.

Notice that there are, apparently, more ‘problems’ than ‘solutions’!
The incorporation of ‘new physics’ into the Big Bang model holds out the pos-

sibility of resolving some of these outstanding issues, though this has so far only
been achieved in a qualitative manner. The assumptions made in what one might
call the ‘revised standard model’ would then be that

1. known physics and theories of particle physics (‘new physics’) are valid, as
is general relativity with Λ not necessarily zero;
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2. the Cosmological Principle is valid; and

3. the same initial conditions hold as in the standard model at Ti � 1019 GeV,
except that the baryon asymmetry is accounted for (in principle) by the new
physics we have accepted into the framework.

Successes of the ‘revised standard model’ are

1. all the advantages of the standard model;

2. a relatively clear understanding of the evolution of the Universe at T >
1012 K;

3. the possible existence of non-baryonic particles as candidates for the dark
matter;

4. the explanation of baryosynthesis (though, as yet, only qualitatively); and

5. a consolidation of the theory of structure formation by virtue of the exis-
tence of non-baryonic particles through (3).

This modernised version of the Big Bang therefore eliminates many of the prob-
lems of the standard model, particularly the fourth, fifth and eighth of the pre-
vious list, but leaves some and, indeed, adds some others. Two new problems
which appear in this model are concerned with: (1) the possible production of
magnetic monopoles and (2) the cosmological constant. We shall discuss these in
Sections 7.6 and 7.7. We shall see later in this chapter that the theory of inflation
can ‘solve’ the monopole, flatness and horizon problems.

7.6 The Monopole Problem

Any GUT in which electromagnetism, which has a U(1) gauge group, is contained
within a gauge theory involving a spontaneous symmetry breaking of a higher
symmetry, such as SU(5), provides a natural explanation for the quantisation of
electrical charge and this implies the existence of magnetic monopoles. These
monopoles are point-like defects in the Higgs field Φ which appears in GUTs.
Defects are represented schematically in Figure 7.3, in which the arrows indicate
the orientation of Φ in the internal symmetry space of the theory, while the loca-
tion of the arrows represents a position in ordinary space. Monopoles are zero
dimensional; higher-dimensional analogues are also possible and are called strings
(one dimensional), domain walls (two dimensional) and textures (three dimen-
sional).
In this discussion we shall use electrostatic units. Monopoles have a magnetic

charge

gn = ngD, (7.6.1)

which is a multiple of the Dirac charge gD,

gD = �c
2e

= 68.5e; (7.6.2)
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(a) (b) (c)

Figure 7.3 Schematic representation of topological defects in the Higgs field: a mono-
pole (a); a string (b); a domain wall (c). The three-dimensional analogue of these defects
is called a texture, but we cannot draw this in two dimensions! The arrows represent the
orientation of the field Φ in an internal symmetry space, while their position indicates
location in real space.

a mass

mM � 4π
�c
e2
mX � 103mX, (7.6.3)

where X is the boson that mediates the GUT interaction, called the Higgs boson,
with mass

mX � e(�c)1/2mGUT � 10−1mGUT (7.6.4)

(mGUT is the energy corresponding to the spontaneous breaking of the GUT sym-
metry); the size of the monopoles is

rM � �

mXc
. (7.6.5)

For typical GUTs, such as SU(5), we have mGUT � 1014–1015 GeV, so that mM �
1016 GeV (� 10−8 g) and rM � 10−28 cm.
The other types of topological defects in the Higgs field shown in Figure 7.3 are

also predicted by certain GUTs. The type of defect appearing in a phase transition
depends on the symmetry and how it is broken in a complicated fashion, which
we shall not discuss here. From a cosmological perspective, domain walls, if they
exist, represent a problem just as monopoles do and which we shall discuss a
little later. Cosmic strings, however, again assuming they exist, may be a solution
rather than a problem because they may be responsible for generating primordial
fluctuations which give rise to galaxies and clusters of galaxies, though this is
believed only by a minority of cosmologists; we shall discuss this option briefly
in Section 13.9.
Now let us explain the cosmological monopole problem. In the course of its

evolution the Universe suffers a spontaneous breaking of the GUT symmetry at
TGUT, for example via SU(5)→ SU(3)×SU(2)×U(1). As we discussed in Section 7.3
it therefore moves from a disordered phase to an ordered phase characterised by
an order parameter Φ ≠ 0, which in this case is just the value of the Higgs field.
During this transition monopoles will be formed. The number of monopoles can
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be estimated in the following manner: if ξ is the characteristic dimension of the
domains which form during the breaking of the symmetry (ξ is also sometimes
called the correlation length of the Higgs field), the maximum number density of
monopoles nM,max is of the order ξ−3. In reality, not all the intersections between
domains give rise to monopoles: one expects that this reduces the above estimate
by a factor p � 1

10 . Given that the points within any single domain are causally
connected, we must have

ξ < rH(t) � 2ct � 0.6g∗(T)−1/2
�TPc
kBT 2

, (7.6.6)

where TP is the Planck temperature. It turns out therefore that, at TGUT,

nM > p
[
g∗(TGUT)1/2TGUT

0.6TP

]3
nγ(TGUT), (7.6.7)

which, for TGUT � 1015 GeV, gives

nM > 10−10nγ. (7.6.8)

Any subsequent physical processes are expected to be very inefficient at reducing
the ratio nM/nγ . The present density of monopoles per unit volume is therefore
expected to be

n0M > 10−10n0γ � n0b, (7.6.9)

which is of order, or greater than, that of the baryons and which corresponds to
a density parameter in monopoles of order

ΩM >
mM

mp
Ωb � 1016, (7.6.10)

clearly absurdly large.
The problem of the domain walls, in cases where they are predicted by GUTs,

is of the same character. The problem of cosmological monopole production,
which to some extent negates the successes of cosmologies incorporating the
‘new physics’, was the essential stimulus which gave rise to the inflationary cos-
mology we shall discuss later in this chapter.

7.7 The Cosmological Constant Problem

As we saw in Chapter 1, the Einstein equations with Λ ≠ 0, having

T(Λ)ij = −pΛgij + (pΛ + ρΛc2)UiUj, (7.7.1)

where

ρΛ = −pΛ
c2

≡ Λc2

8πG
, (7.7.2)
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yield for the case of a homogeneous and isotropic universe the relations

ȧ2 = 8
3πG(ρ + ρΛ)a2 −Kc2, (7.7.3a)

ä = −4
3πG

(
ρ + 3

p
c2

− 2ρΛ
)
a. (7.7.3b)

From these equations at t = t0, putting p0 � 0, we obtain

K
a20

= H
2
0

c2
(Ω0 +ΩΛ − 1), (7.7.4a)

q0 = 1
2Ω0 −ΩΛ, (7.7.4b)

where ΩΛ ≡ ρΛ/ρ0c. The observational limits on Ω0 and q0 yield

|ρΛ| < 2ρ0c � 4× 10−29 g cm−3 � 10−46
m4

n

(�/c)3
� 10−48 GeV4 (7.7.5)

(mn is the mass of a nucleon; in the last relation we have used ‘natural’ units in
which � = c = 1), corresponding to

|Λ| < 10−55 cm−2. (7.7.6)

From Λ one can also construct a quantity which has the dimensions of a mass

mΛ =
[
|ρΛ|

(
�

c

)3]1/4
=
(

�3

8πGc
|Λ|
)1/4

< 10−32 eV (7.7.7)

(to be compared with the upper limit on the mass of the photon: according to
recent estimates this is mγ < 3 × 10−27 eV). The problem of the cosmological
constant lies in the fact that the quantities |Λ|, |ρΛ| and |mΛ| are so amazingly
and, apparently, ‘unnaturally’ small.
The modern interpretation of Λ is the following: ρΛ and pΛ represent the den-

sity and pressure of the vacuum, which is understood to be like the ground state
of a quantum system:

ρΛ ≡ ρv, pΛ ≡ pv = −ρvc2 (7.7.8)

(the equation of state pv = −ρvc2 comes from the Lorentz-invariance of the
energy–momentum tensor of the vacuum). In modern theories of elementary par-
ticles with spontaneous symmetry breaking it turns out that

ρv � V(Φ, T), (7.7.9)

where V(Φ, T) is the effective potential for the theory. This is the analogous quan-
tity to the free energy F discussed above in the simple (non-quantum) thermo-
dynamical case of Section 7.3; its variation with T determines the spontaneous
breaking of the symmetry; Φ is the Higgs field, the expectation value of which
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is analogous to the order parameter in the thermodynamical case. An important
consequence of Equation (7.7.9) is that the cosmological ‘constant’ depends on
time through its dependence upon T . This fact is essentially the basis of the infla-
tionary model we shall come to shortly.
Modern gauge theories predict that

ρv � m4

(�/c)3
+ const., (7.7.10)

where m is the energy at which the transition occurs (1015 GeV for GUT tran-
sitions, 102 GeV for the electroweak transition, 10−1 GeV for the quark–hadron
transition and (perhaps) 103 GeV for a supersymmetric transition). The constant
in Equation (7.7.10) is arbitrary (although its value might be accounted for in
supersymmetric theories). In the symmetry-breaking phase one has a decrease of
ρv of order

∆ρv � m4

(�/c)3
, (7.7.11)

corresponding to 1060 GeV4 for the GUT, 1012 GeV4 for supersymmetry, 108 GeV4

for the electroweak transition, and 10−4 GeV4 for QCD.
In light of these previous comments the cosmological constant problem can be

posed in a clearer form:

ρv(tP) = ρv(t0)+
∑
i
∆ρv(mi) � 10−48 GeV4+1060 GeV4 =

∑
i
∆ρv(mi)(1+10−108),

(7.7.12)

where ρv(tP) and ρv(t0) are the vacuum density at the Planck and present times,
respectively, and mi represents the energies of the various phase transitions
which occur between tP and t0. Equation (7.7.12) can be phrased in two ways:
ρv(tP)must differ from

∑
i∆ρv(mi) over the successive phase transitions by only

one part in 10108; or the sum
∑
i∆ρv(mi) must, in some way, arrange itself so as

to satisfy (7.7.12). Either way, there is definitely a problem of extreme ‘fine-tuning’
in terms of ρv(tP) or

∑
i∆ρv(mi).

At the moment, there exist only a few theoretical models which even attempt
to resolve the problem of the cosmological constant. Indeed, many cosmologists
regard this problem as the most serious one in all cosmology. This is strictly con-
nected with the theory of particle physics and, in some way, to quantum gravity.
Inflation, we shall see, does not solve this problem; indeed, one could say that
inflation is founded upon it.

7.8 The Cosmological Horizon Problem

7.8.1 The problem

Recall that one of the fundamental assumptions of the Big Bang theory is the Cos-
mological Principle, which, as we explained in Chapter 6, is intimately connected



148 Phase Transitions and Inflation

with the existence of the initial singularity. As we saw in Chapter 2, all the Fried-
mann models with equation of state in the form p = wρc2, withw � 0, possess a
particle horizon. This result can also be extended to other equations of state with
p � 0 and ρ � 0. If the expansion parameter tends to zero at early times like tβ

(with β > 0), then the particle horizon at time t,

RH(t) = a(t)
∫ t
0

c dt′

a(t′)
, (7.8.1)

exists if β < 1. From Equation (6.1.1), with a∝ tβ, we obtain

β(β− 1) = −4
3πG

(
ρ + 3

p
c2

)
t2 ∝ ä. (7.8.2)

This demonstrates that the condition for the existence of the Big Bang singularity,
ä < 0, requires that 0 < β < 1 and that there must therefore also be a particle
horizon.
The existence of a cosmological horizon makes it difficult to accept the Cosmo-

logical Principle. This principle requires that there should be a correlation (a very
strong correlation) of the physical conditions in regions which are outside each
other’s particle horizons and which, therefore, have never been able to commu-
nicate by causal processes. For example, the observed isotropy of the microwave
background implies that this radiation was homogeneous and isotropic in regions
on the last scattering surface (i.e. the spherical surface centred upon us which is
at a distance corresponding to the look-back time to the era at which this radi-
ation was last scattered by matter). As we shall see in Chapter 9, last scattering
probably took place at an epoch, tls, corresponding to a redshift zls � 1000. At
that epoch the last scattering surface had a radius

rls � c(t0 − tls)(1+ zls) � ct0
zls
, (7.8.3)

because zls � 1. The radius of the particle horizon at this epoch is given by
Equation (2.7.3) with w = 0,

RH(zls) � 3ct0z
−3/2
ls � 3rlsz

−1/2
ls � 10−1rls  rls; (7.8.4)

at zls the microwave background was homogeneous and isotropic over a sphere
with radius at least ten times larger than that of the particle horizon.
Various routes have been explored in attempts to find a resolution of this prob-

lem. Some homogeneous but anisotropic models do not have a particle horizon
at all. One famous example is the mix-master model proposed by Misner (1968),
which we mentioned in Chapters 1 and 3. Other possibilities are to invoke some
kind of isotropisation process connected with the creation of particles at the
Planck epoch, or a modification of Einstein’s equations to remove the Big Bang
singularity and its associated horizon.
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l3t1 t2 t0ti tf t

rc(t)

rc(t0)
rc(ti)

l0

Figure 7.4 Evolution of the comoving cosmological horizon rc(t) in a universe charac-
terised by a phase with an accelerated expansion (inflation) from ti to tf . The scale l0 enters
the horizon at t1, leaves at t2 and re-enters at t3. In a model without inflation the horizon
scale would never decrease so scales entering at t0 could never have been in causal contact
before. The horizon problem is resolved if rc(t0) � rc(ti).

7.8.2 The inflationary solution

The inflationary universe model also resolves the cosmological horizon problem
in an elegant fashion. We shall discuss inflation in detail in Sections 7.10 and 7.11,
but this is a good place to introduce the basic idea. Recall that the horizon problem
is essentially the fact that a region of proper size l can only become causally
connected when the horizon RH = l. In the usual Friedmann models at early times
the horizon grows like t, while the proper size of a region of fixed comoving size
scales as tβ with β < 1. In the context of inflation it is more illuminating to deal
with the radius of the Hubble sphere (which determines causality properties at a
particular epoch) rather than the particle horizon itself. As in Section 2.7 we shall
refer to this as the cosmological horizon for the rest of this chapter; its proper
size is Rc = c/H = ca/ȧ and its comoving size is rc = Rc(a0/a) = ca0/ȧ. The
comoving scale l0 enters the cosmological horizon at time tH(l0) ≠ 0 because rc
grows with time. Processes occurring at the epoch t cannot connect the region of
size l0 causally until t � tH(l0). In the ‘standard’ models, with p/ρc2 = w = const.
and w > −1

3 , we have at early times

rH = a0
a
RH(t) = a0

∫ t
0

c dt′

a(t′)
� 3(1+w)
(1+ 3w)

ct0
(
t
t0

)(1+3w)/3(1+w)
� ca0

ȧ
, (7.8.5)

so that

rH � rc; (7.8.6)

one therefore finds that ṙH ∝ −ä∝ (1+ 3w) > 0.
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Imagine that there exists a period ti < t < tf sometime during the expansion
of the Universe, in which the comoving scale l0, which has already been causally
connected, somehow manages to escape from the horizon, in the sense that any
physical processes occurring in this interval can no longer operate over the scale
l0. We stress that it is not possible to ‘escape’ in this way from a particle horizon
(or event horizon), but the cosmological horizon is not a true horizon in the formal
sense explained in Section 2.7. Such an escape occurs if

l0 > rc. (7.8.7)

This inequality can only be valid if the comoving horizon ca0/ȧ decreases with
time, which requires an accelerated expansion, ä > 0. After tf we suppose that the
Universe resumes the usual decelerated expansion. The behaviour of rc in such a
model is shown graphically in Figure 7.4. The scale l0 is not causally connected
before t1. It becomes connected in the interval t1 < t < t2; at t2 it leaves the
horizon; in the interval t2 < t < t3 its properties cannot be altered by (causal)
physical processes; at t3 it enters the horizon once more, in the sense that causal
processes can affect the physical properties of regions on the scale l0 after this
time. An observer at time t3, who was unaware of the existence of the period of
accelerated expansion, would think the scale l0 was coming inside the horizon for
the first time and would be surprised if it were homogeneous. This observer would
thus worry about the horizon problem. The problem is, however, non-existent if
there is an accelerated expansion and if the maximum scale which is causally
connected is greater than the present scale of the horizon, i.e.

rc(t0) � rc(ti). (7.8.8)

To be more precise, unless we accept it as a coincidence that these two comoving
scales should be similar, a solution is only really obtained if the inequality (7.8.8)
is strong, i.e. rc(t0) rc(ti).
In any case the solution is furnished by a period ti < t < tf of appropriate dura-

tion, in which the universe suffers an accelerated expansion: this is the definition
of inflation. In such an interval we must therefore have p < −ρc2/3; in particu-
lar if p = wρc2, with constant w, we must have w < −1

3 . From the Friedmann
equations in this case we recover, for tf > t > ti,

a � a(ti)
[
1+ 1

q
H(ti)(t − ti)

]q
, q = 2

3(1+w) (7.8.9)

(this solution is exact when the curvature parameter K = 0). For H(ti)t � 1 one
has

a∝ tq (−1
3 > w > −1), (7.8.10a)

a∝ exp(t/τ) (w = −1), (7.8.10b)
a∝ (ta − t)q (w < −1); (7.8.10 c)

the exponent q is greater than one in the first case and negative in the last case;
τ = (a/ȧ)t=ti and ta = ti − [2/(3(1 +w))]H(ti)−1 > ti. The types of expansion
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described by these equations are particular cases of an accelerated expansion.
One can verify that the condition for inflation can be expressed as

ä = a(H2 + Ḣ) > 0; (7.8.11)

sometimes one uses the terms sub-inflation for models in which Ḣ < 0, standard
inflation or exponential inflation for Ḣ = 0, and super-inflation for Ḣ > 0. The three
solutions (7.8.10) correspond to these three cases, respectively; the type of infla-
tion expressed by (7.8.10a) is also called power-law inflation.
The requirement that they solve the horizon problem imposes certain condi-

tions on inflationary models. Consider a simple model in which the time between
some initial time ti and the present time t0 is divided into three intervals: (ti, tf),
(tf, teq), (teq, t0). Let the equation-of-state parameter in any of these intervals be
wij , where i and j stand for any of the three pairs of starting and finishing times.
Let us take, for example, wij = w < −1

3 for the first interval, wij = 1
3 for the

second, and wij = 0 for the last. If Ωij � 1 in any interval, then

Hiai
Hjaj

�
(
ai
aj

)−(1+3wij)/2
(7.8.12)

from Equation (2.1.12). The requirement that

rc(ti) = ca0ȧi � rc(t0) = c
H0

(7.8.13)

implies that Hiai  H0a0. This, in turn, means that

Hiai
Hfaf

 H0a0
Hfaf

= H0a0
Heqaeq

Heqaeq
Hfaf

, (7.8.14)

so that, from (7.8.12), one gets

(
af
ai

)−(1+3w)
�
(
a0
aeq

)(aeq
af

)2
, (7.8.15)

which yields, after some further manipulation,

(
af
ai

)−(1+3w)
� 1060z−1eq

(
Tf
TP

)2
(7.8.16)

(TP � 1032 K is the usual Planck temperature). This result requires that the number
of e-foldings, N ≡ ln(af/ai), should be

N � 60
[2.3+ 1

30 ln(Tf/TP)− 1
60 lnzeq

|1+ 3w|
]
. (7.8.17)

In most inflationary models which have been proposed, w � −1 and the ratio
Tf/TP is contained in the interval between 10−5 and 1, so that this indeed requires
N � 60.
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7.9 The Cosmological Flatness Problem

7.9.1 The problem

In the Friedmann equation without the cosmological constant term

(
ȧ
a

)2
= 8π

3
Gρ − Kc

2

a2
, (7.9.1)

when the universe is radiation dominated so that ρ ∝ T 4, there is no obvious
characteristic scale other than the Planck time

tP �
(
G�

c5

)1/2
� 10−43 s. (7.9.2)

From a theoretical point of view, in a closed universe, one is led to expect a time
of maximum expansion tm which is of order tP followed by a subsequent rapid
collapse. On the other hand, in an open universe, the curvature term Kc2/a2 is
expected to dominate over the gravitational term 8πGρ/3 in a time t∗ � tP. In
this second case, given that, as one can deduce from Equation (2.3.9), for t > t∗
we have

a(t)
a(tP)

� t
tP

� TP
T
, (7.9.3)

we obtain

t0 � tP TPT0r � 10−11 s. (7.9.4)

The Universe has probably survived for a time of order 1010 years, corresponding
to around 1060tP, meaning that at very early times the kinetic term (ȧ/a)2 must
have differed from the gravitational term 8πGρ/3 by a very small amount indeed.
In other words, the density at a time t � tP must have been very close to the critical
density.
As we shall see shortly, we have

Ω(tP) � 1+ (Ω0 − 1)10−60. (7.9.5)

The kinetic term at tP must have differed from the gravitational term by about
one part in 1060. This is another ‘fine-tuning’ problem. Why are these two terms
tuned in such a way as to allow the Universe to survive for 1010 years? On the
other hand the kinetic and gravitational terms are now comparable because a
very conservative estimate gives

10−2 < Ω0 < 2. (7.9.6)

This problem is referred to as the age problem (how did the Universe survive so
long?) or the (near) flatness problem (why is the density so close to the critical
density?).
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There is yet another way to present this problem. The Friedmann equation,
divided by the square of the constant Ta = T0ra0, becomes

(
H0

T0r

)2
(Ω0 − 1) =

(
H
Tr

)2
(Ω − 1) = const. = Kc2

(a0T0r)2
; (7.9.7)

this constant can be rendered dimensionless by multiplying by the quantity
(�/kB)2. We thus obtain

|ε(T)| ≡ |K|
(

�c
akBT

)2
=
(

�H0

kBT0r

)2
|Ω0 − 1| � |Ω0 − 1|10−58 < 10−57; (7.9.8)

the dimensionless constant we have introduced remains constant at a very small
value throughout the evolution of the Universe. The flatness problem can be
regarded as the problem of why |ε(T)| is so small. Perhaps one might think that
the correct resolution is that ε(T) = 0 exactly, so that K = 0. However, one should
bear inmind that the Universe is not exactly described by a Robertson–Walkermet-
ric because it is not perfectly homogeneous and isotropic; it is therefore difficult
to see how to construct a physical principle which requires that a parameter such
as ε(T) should be exactly zero.
It is worth noting that ε(T) is related to the entropy Sr of the radiation of the

Universe. Supposing that K ≠ 0, the dimensionless entropy contained inside a
sphere of radius a(t) (the curvature radius) is

σU = Sr
kB

�
(
kBTa

�c

)3
� |ε(T)|−3/2 =

(
kBT0r
�H0

)3
|Ω0 − 1|−3/2 > 1086. (7.9.9)

Given that the entropy of the matter is negligible compared with that of the radi-
ation and of the massless neutrinos (Sν is of order Sr), the quantity σU can be
defined as the dimensionless entropy of the Universe (a0 is often called the ‘radius
of the universe’). This also represents the number of particles (in practice, pho-
tons and neutrinos) inside the curvature radius. What is the explanation for this
enormous value of σU? This is, in fact, just another statement of the flatness prob-
lem. It is therefore clear that any model which explains the high value of σU also
solves this problem. As we shall see, inflationary universe models do resolve this
issue; indeed they generally predict that Ω0 should be very close to unity, which
may be difficult to reconcile with observations.
It is now an appropriate time to return in a little more detail to Equation (7.9.5).

From the Friedmann equation

ȧ2 − 8
3πGρa

2 = −Kc2, (7.9.10)

one easily finds that during the evolution of the Universe we have

(Ω−1 − 1)ρ(t)a(t)2 = (Ω−1
0 − 1)ρ0a20 = const. (7.9.11)
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The standard picture of the Universe (without inflation) is well described by a
radiative model until zeq and by a matter-dominated model from then until now.
From Equation (7.9.11) and the usual formulae

ρ = ρeq
(aeq
a

)4
(z > zeq), ρ = ρ0

(
a0
a

)3
(z < zeq), (7.9.12)

we can easily obtain the relationship between Ω, corresponding to a time t teq
when the temperature is T , and Ω0:

(Ω−1 − 1) = (Ω−1
0 − 1)(1+ zeq)−1

(Teq
T

)2
= (Ω−1

0 − 1)10−60
(
TP
T

)2
. (7.9.13)

If we accept that |Ω−1
0 −1| � 1, this implies thatΩmust have been extremely close

to unity during primordial times. For example, at tP we have |Ω−1
P − 1| � 10−60,

as we have already stated in Equation (7.9.5).

7.9.2 The inflationary solution

Now we suppose that there is a period of accelerated expansion between ti and
tf. Following the same philosophy as we did in Section 7.8, we divide the history
of the Universe into the same three intervals (ti, tf), (tf, teq) and (teq, t0), where
ρ ∝ a−3(1+wij), with wij = w < −1

3 , wij = 1
3 and wij = 0, respectively. We find,

from Equation (7.9.11),

(Ω−1
i − 1)ρia2i = (Ω−1

f − 1)ρfa2f = (Ω−1
eq − 1)ρeqa2eq = (Ω−1

0 − 1)ρ0a20, (7.9.14)

so that

Ω−1
i − 1

Ω−1
0 − 1

= ρ0a
2
0

ρia2i
= ρ0a20
ρeqa2eq

ρeqa2eq
ρfa2f

ρfa2f
ρia2i

, (7.9.15)

which gives, in a similar manner to Equation (7.8.15),

(
af
ai

)−(1+3w)
=
(Ω−1

i − 1

Ω−1
0 − 1

)(
a0
aeq

)(aeq
af

)2
. (7.9.16)

After some further manipulation we find

(
af
ai

)−(1+3w)
=
(
1−Ω−1

i

1−Ω−1
0

)
1060z−1eq

(
Tf
TP

)2
. (7.9.17)

One can assume that the flatness problem is resolved as long as the following
inequality is valid:

1−Ω−1
i

1−Ω−1
0

� 1, (7.9.18)
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(a)

Ω(t)

1

t0ti tf t

(b)

Figure 7.5 Evolution of Ω(t) for an open universe (a) and closed universe (b) charac-
terised by three periods (0, ti), (ti, tf), (tf , t0). During the first and last of these periods
p/ρc2 = w > − 1

3 (decelerated expansion), while in the second w < − 1
3 (accelerated

expansion). If the inflationary period is sufficiently dramatic, the later divergence of the
trajectories from Ω = 1 is delayed until well beyond t0.

in other words Ω0 is no closer to unity now than Ωi was. The condition (7.9.18),
expressed in terms of the number of e-foldings N , becomes

N � 60
[2.3+ 1

30 ln(Tf/TP)− 1
60 lnzeq

|1+ 3w|
]
. (7.9.19)

For example, in the case where w � −1 the solution of the horizon problem
N � pNmin = p30[2.3+ 1

30 ln(Tf/TP)], with p > 1, implies a relationship between
Ωi and Ω0

(1−Ω−1
0 ) =

(1−Ω−1
i )

exp[2(p − 1)Nmin]
. (7.9.20)

If |1−Ω−1
i | � 1, even if p = 2, one obtains

|1−Ω−1
0 | � 10−[60+ln(Tf/TP)]  1. (7.9.21)

In general, therefore, an adequate solution of the horizon problem (p� 1) would
imply that Ω0 would be very close to unity for a universe with |1 −Ω−1

i | � 1. In
other words, in this case inflation would automatically take care of the flatness
problem as well.
This argument may explain why Ω is close to unity today, but it also poses a

problem of its own. If Ω0 � 1 to high accuracy, what is the bulk of the matter
made from, and why do dynamical estimates of Ω0 yield typical values of order
0.2? If it turns out that Ω0 is actually of this order, then much of the motivation
for inflationary models will have been lost. We should also point out that inflation
does not predict an exactly smooth Universe; small-amplitude fluctuations appear
in a manner described in Chapter 14. These fluctuations mean that, on the scale of
our observable Universe, the density parameter would be uncertain by the amount
of the density fluctuation on that scale. In most models the fractional fluctuation
is of order 10−5, so it does not make sense to claim that Ω0 is predicted to be
unity with any greater accuracy than this.
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7.10 The Inflationary Universe

The previous sections have given some motivation for imagining that there might
have been an epoch during the evolution of the Universe in which it underwent an
accelerated expansion phase. This would resolve the flatness and horizon prob-
lems. It would also possibly resolve the problem of topological defects because,
as long as inflation happens after (or during) the phase transition producing the
defects, they will be diluted by the enormous increase of the scale factor. Begin-
ning in 1982, various authors have also addressed another question in the frame-
work of the inflationary universe which is directly relevant to the main subject of
this book. The idea here is that quantum fluctuations on microscopic scales dur-
ing the inflationary epoch can, again by virtue of the enormous expansion, lead
to fluctuations on very large scales today. It is possible that this ‘quantum noise’
might therefore be the source of the primordial fluctuation spectrumwe require to
make models of structure-formation work. In fact, as we shall see in Section 14.6,
one obtains a primordial spectrum which is slightly dependent upon the form of
the inflationary model, but is usually close to the so-called Harrison–Zel’dovich
spectrum which was proposed, for different reasons, by Harrison, Zel’dovich and
also Peebles and Yu, around 1970.
Assuming that we accept that an epoch of inflation is in some sense desirable,

how can we achieve such an epoch physically? The answer to this question lies in
the field of high-energy particle physics, so from now until the end of this chapter
we shall use the language of natural units with c = � = 1.
The idea at the foundation ofmostmodels of inflation is that there was an epoch

in the early stages of the evolution of the Universe in which the energy density
of the vacuum state of a scalar field ρv � V(φ) is the dominant contribution to
the energy density. In this phase the expansion factor a grows in an accelerated
fashion which is nearly exponential if V � const. This, in turn, means that a small
causally connected region with an original dimension of order H−1 can grow to
such a size that it exceeds the size of our present observable Universe, which has
a dimension of order H−1

0 .
There exist many different versions of the inflationary universe. The first was

formulated by Guth (1981), although many of his ideas had been presented pre-
viously by Starobinsky (1979). In Guth’s model inflation was assumed to occur
while the universe is trapped in a false vacuum with Φ = 0 corresponding to the
first-order phase transition which characterises the breaking of an SU(5) symme-
try into SU(4)×U(1). This model was subsequently abandoned for reasons which
we shall mention below.
The next generation of inflationarymodels shared the characteristics of amodel

called the new inflationary universe, which was suggested independently by Linde
(1982a,b) and Albrecht and Steinhardt (1982). In models of this type, inflation
occurs during a phase in which the region which grows to include our observable
‘patch’ evolves slowly from a ‘false’ vacuum with Φ = 0 towards a ‘true’ vacuum
with Φ = Φ0. In fact, it was later seen that this kind of inflation could also be
achieved in many different contexts, not necessarily requiring the existence of a
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phase transition or a spontaneous symmetry breaking. Anyway, from an explana-
tory point of view, this model appears to be the clearest. It is based on a certain
choice of parameters for an SU(5) theory which, in the absence of any experimen-
tal constraints, appears a little arbitrary. This problem is common also to other
inflationary models based on theories like supersymmetry, superstrings or super-
gravity which have not yet received any experimental confirmation or, indeed, are
likely to in the foreseeable future. It is fair to say that the inflationary model
has become a sort of ‘paradigm’ for resolving some of the difficulties with the
standard model, but no particular version of it has received any strong physical
support from particle physics theories.
Let us concentrate for a while on the physics of generic inflationary models

involving symmetry breaking during a phase transition. In general, gauge theories
of elementary particle interactions involve an order parameter Φ, determining the
breaking of the symmetry, which is the expectation value of the scalar field which
appears in the classical Lagrangian LΦ

LΦ = 1
2 Φ̇

2 − V(Φ;T). (7.10.1)

As we mentioned in Section 6.1, the first term in Equation (7.10.1) is called the
kinetic term and the second is the effective potential, which is a function of tem-
perature. In Equation (7.10.1) for simplicity we have assumed that the expectation
value of Φ is homogeneous and isotropic with respect to spatial position. As we
have already explained in Section 6.1, the energy–momentum tensor of a scalar
field can be characterised by an effective energy density ρΦ and by an effective
pressure pΦ given by

ρΦ = 1
2 Φ̇

2 + V(Φ;T), (7.10.2a)

pΦ = 1
2 Φ̇

2 − V(Φ;T), (7.10.2b)

respectively. The potential V(Φ;T) plays the part of the free energy F of the sys-
tem, which displays the breaking symmetry described in Section 7.3; in particular,
Figure 7.2 is a useful reference for the following comments. This figure refers to
a first-order phase transition, so what follows is relevant to the case of Guth’s
original ‘old’ inflation model. The potential has an absolute minimum at Φ = 0
for T � Tc, this is what will correspond to the ‘false’ vacuum phase. As T nears
Tc the potential develops another two minima at Φ = ±Φ0, which for T � Tc
have a value of order V(0;Tc): the three minima are degenerate. We shall now
assume that the transition ‘chooses’ the minimum at Φ0; at T  Tc this minimum
becomes absolute and represents the true vacuum after the transition; at these
energies we can ignore the dependence of the potential upon temperature. We
also assume, for reasons which will become clear later, that V(Φ0; 0) = 0. In this
case the transition does not occur instantaneously at Tc because of the potential
barrier between the false and true vacua; in other words, the system undergoes a
supercooling while the system remains trapped in the false vacuum. Only at some
later temperature Tb < Tc can thermal fluctuations or quantum tunnelling effects
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shift the Φ field over the barrier and down into the true vacuum. Let us indicate
by Φb the value assumed by the order parameter at this event. The dynamics of
this process depends on the shape of the potential. If the potential is such that
the transition is first order (as in Figure 7.2), the new phase appears as bubbles
nucleating within the false vacuum background; these then grow and coalesce so
as to fill space with the new phase when the transition is complete. If the transi-
tion is second order, one generates domains rather than bubbles, like the Weiss
domains in a ferromagnet. One such region (bubble or domain) eventually ends
up including our local patch of the Universe.
The energy–momentum tensor of the whole system, Tij , also contains, in addi-

tion to terms due to the Φ field, terms corresponding to interacting particles,
which can be interpreted as thermal excitations above the minimum of the poten-
tial, with an energy density ρ and pressure p; in this period we have p = ρ/3. The
Friedmann equations therefore become

(
ȧ
a

)2
= 8

3πG(ρΦ + ρ)−
K
a2
, (7.10.3a)

ä = −4
3πG[ρΦ + ρ + 3(pΦ + p)]a = 8

3πG[V(Φ)− Φ̇2 − ρ]a. (7.10.3b)

The evolution of Φ is obtained from the equation of motion for a scalar field:

d
dt
∂(LΦa3)
∂Φ̇

− ∂(LΦa
3)

∂Φ
= 0, (7.10.4)

which gives

Φ̈ + 3
ȧ
a
Φ̇ + ∂V(Φ)

∂Φ
= 0. (7.10.5)

This equation is similar to that describing a ball moving under the action of the
force −∂V/∂Φ against a source of friction described by the viscosity term pro-
portional to 3ȧ/a; in the usual language, one talks of the Φ field ‘rolling down’
the potential towards the minimum at Φ0. Let us consider potentials which have
a large interval (Φi, Φf) with Φb < Φi � Φ � Φf < Φ0 in which V(Φ;T) remains
roughly constant; this property ensures a very slow evolution of Φ towards Φ0,
usually called the slow-rolling phase because, in this interval, the kinetic term Φ̇2/2
is negligible compared with the potential V(Φ;T) in Equation (7.10.3b) and the Φ̈
term is negligible in Equation (7.10.5). One could say that the motion of the field
is in this case dominated by friction, so that the motion of the field resembles the
behaviour of particles during sedimentation.
In order to have inflation one must assume that, at some time, the Universe

contains some rapidly expanding regions in thermal equilibrium at a tempera-
ture T > Tc which can eventually cool below Tc before any gravitational recol-
lapse can occur. Let us assume that such a region, initially trapped in the false
vacuum phase, is sufficiently homogeneous and isotropic to be described by a
Robertson–Walker metric. In this case the evolution of the patch is described by
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Equation (7.10.3a). The expansion rapidly causes ρ and K/a2 to become negli-
gible with respect to ρΦ, which is varying slowly. One can therefore assume that
Equation (7.10.3a) is then (

ȧ
a

)2
� 8

3πGρΦ. (7.10.6)

In the approximation Φ̇2  V(Φ;T) � const., which is valid during the slow-rolling
phase, this equation has the de Sitter universe solution

a∝ exp
(
t
τ

)
, (7.10.7)

with

τ �
[

3
8πGV(Φ;Tb)

]1/2
, (7.10.8)

which is of order 10−34 s in typical models. Let us now fix our attention upon one
such region, which has dimensions of order 1/H(tb) at the start of the slow-rolling
phase and is therefore causally connected. This region expands by an enormous
factor in a very short time τ ; any inhomogeneity and anisotropy present at the
initial time will be smoothed out so that the region loses all memory of its initial
structure. This effect is, in fact, a general property of inflationary universes and
it is described by the so-called cosmic no-hair theorem. The number of e-foldings
of the inflationary expansion during the interval (ti, tf) depends on the potential:

N = ln
[
a(tf)
a(ti)

]
� −8πG

∫ Φf
Φi

(
d lnV(Φ;T)

dΦ

)−1
dΦ; (7.10.9)

if this number is sufficiently large, the horizon and flatness problems can be
solved. The initial region is expanded by such a large factor that it encompasses
our present observable Universe.
Because of the large expansion, the patch we have been following also becomes

practically devoid of particles. This also solves the monopole problem (and also
the problem of domain walls, if they are predicted) because any defects formed
during the transition will be drastically diluted as the Universe expands so that
their present density will be negligible. After the slow-rolling phase the field Φ
falls rapidly into the minimum at Φ0 and there undergoes oscillations: while this
happens there is a rapid liberation of energy which was trapped in the term V �
V(Φf;Tf), i.e. the ‘latent heat’ of the transition. The oscillations are damped by
the creation of particles coupled to the Φ field and the liberation of the latent
heat thus raises the temperature to some value Trh � Tc: this phenomenon is
called reheating, and Trh is the reheating temperature. The region thus acquires
virtually all the energy and entropy that originally resided in the quantum vacuum
by particle creation.
Once the temperature has reached Trh, the evolution of the patch again takes the

character of the usual radiative Friedmann models without a cosmological con-
stant; this latter condition is, however, only guaranteed if V(Φ0; 0) = 0 because
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Figure 7.6 Evolution of Φ inside a ‘patch’ of the Universe. In the beginning we have the
slow-rolling phase between ti and tf , followed by the rapid fall into the minimum at Φ0,
representing the true vacuum, and subsequent rapid oscillations which are eventually
smeared out by particle creation leading to reheating of the Universe.

any zero-point energy in the vacuum would play the role of an effective cosmo-
logical constant. We shall return to this question in the next section.
It is important that the inflationary model should predict a reheating temper-

ature sufficiently high that GUT processes which violate conservation of baryon
number can take place so as to allow the creation of a baryon asymmetry.
As far as its global properties are concerned, our Universe is reborn into a new

life after reheating: it is now highly homogeneous, and has negligible curvature.
This latter prediction may be a problem for, as we have seen, there is little strong
evidence that Ω0 is very close to unity.
Another general property of inflationary models, which we have not described

here, is that fluctuations in the quantum field driving inflation can, in principle,
generate a primordial spectrum of density fluctuations capable of seeding the for-
mation of galaxies and clusters. We shall postpone a discussion of this possibility
until Section 14.6.

7.11 Types of Inflation

We have already explained that there are many versions of the inflationary model
which are based on slightly different assumptions about the nature of the scalar
field and the form of the phase transition. Let us mention some of them here.

7.11.1 Old inflation

The first inflationary model, suggested by Guth (1981), is usually now called old
inflation. Thismodel is based on a scalar field theory which undergoes a first-order
phase transition. The problem is that, being a first-order transition, it occurs by
a process of bubble nucleation. It turns out, however, that these bubbles would
be too small to be identified with our observable Universe and would be carried
apart by the expanding phase too quickly for them to coalesce and produce a large
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bubble which one could identify in this way. The end state of this model would
therefore be a highly chaotic universe, quite the opposite of what is intended. This
model was therefore abandoned soon after it was suggested.

7.11.2 New inflation

The successor to old inflation was new inflation (Linde 1982a,b; Albrecht and
Steinhardt 1982). This is again a theory based on a scalar field, but this time the
potential is qualitatively similar to Figure 7.1, rather than 7.2. The field is originally
in the false vacuum state at Φ = 0, but as the temperature lowers it begins to
roll down into one of the two degenerate minima. There is no potential barrier,
so the phase transition is second order. The process of spinodal decomposition
which accompanies a second-order phase transition usually leaves one with larger
coherent domains and one therefore ends up with relatively large space-filling
domains.
The problem with new inflation is that it suffers from severe fine-tuning prob-

lems. One such problem is that the potential must be very flat near the origin to
produce enough inflation and to avoid excessive fluctuations due to the quantum
field. Another is that the field Φ is assumed to be in thermal equilibrium with
the other matter fields before the onset of inflation; this requires that Φ be cou-
pled fairly strongly to the other fields. But the coupling constant would induce
corrections to the potential which would violate the previous constraint. It seems
unlikely therefore that one can achieve thermal equilibrium in a self-consistent
way before inflation starts under the conditions necessary for inflation to happen.

7.11.3 Chaotic inflation

One of the most popular inflationary models is chaotic inflation, due to Linde
(1983). Again, this is a theory based on a scalar field, but it does not require any
phase transitions. The basis of this model is that, whatever the detailed shape
of the effective potential, a patch of the Universe in which Φ is large, uniform
and static will automatically lead to inflation. For example, consider the simple
quadratic potential

V(Φ) = 1
2m

2Φ2, (7.11.1)

wherem is an arbitrary parameter describing the mass of the scalar field. Assume
that, at t = ti, the field Φ = Φi is uniform over a scale ∼ H−1(ti) and that

Φ̇2i  V(Φi). (7.11.2)

The equation of motion of the scalar field then simply becomes

Φ̈ + 3HΦ̇ = −m2Φ, (7.11.3)

which, with the slow-rolling approximation, is just

3HΦ̇ � −m2Φ. (7.11.4)
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Since H ∝ V1/2 ∝ Φ, this equation is easy to solve and it turns out that, in order
to get sufficient inflation to solve the flatness and horizon problems, one needs
Φ > 3mP in the patch.
In chaotic inflation one assumes that at some initial time, perhaps just after

the Planck time, the Φ field varied from place to place in an arbitrary manner. If
any region satisfies the above conditions it will inflate and eventually encompass
our observable Universe. While the end result of chaotic inflation is locally flat
and homogeneous in our observable ‘patch’, on scales larger than the horizon the
Universe is highly curved and inhomogeneous. Chaotic inflation is therefore very
different from both old and new inflationary models. This is reinforced by the
fact that no mention of GUT or supersymmetry theories appears in this analysis.
The field Φ which describes chaotic inflation at the Planck time is completely
decoupled from all other physics.

7.11.4 Stochastic inflation

The natural extension of Linde’s chaotic inflationary model is called stochastic
inflation or, sometimes, eternal inflation (Linde et al . 1994). The basic idea is the
same as chaotic inflation in that the Universe is globally extremely inhomoge-
neous. The stochastic inflation model, however, takes into account quantum fluc-
tuations during the evolution of Φ. One finds in this case that the Universe at
any time will contain regions which are just entering into an inflationary phase.
One can picture the Universe as a continuous ‘branching’ process in which new
‘miniuniverses’ expand to produce locally smooth Hubble patches within a highly
chaotic background Universe. This picture is like a Big Bang on the scale of each
miniuniverse, but globally is reminiscent of the steady-state universe. The contin-
ual birth and rebirth of these miniuniverses is often called, rather poetically, the
‘Phoenix Universe’ model.

7.11.5 Open inflation

In the mid-1990s there was a growing realisation among cosmologists that evi-
dence for a critical matter density was not forthcoming (e.g. Coles and Ellis 1994).
This even reached inflation theorists, who defied the original motivation for infla-
tion and came up with versions of inflation that would homogeneous but curved
universes. Usually inflation stretches the curvature as well as smoothing lumpi-
ness, so this seems at first sight a very difficult task for inflation.
Open inflation models square the circle by invoking a kind of quantum tun-

nelling from a metastable false vacuum state immediately followed by a second
phase of inflation, an idea originally due to Gott (1982). The tunnelling creates a
bubble inside which the space–time resembles an open universe.
Although it is possible to engineer an inflationarymodel that producesΩ0 � 0.2

at the present epoch, it certainly seems to require more complexity than models
that produce flat spatial sections. Recent evidence from microwave background
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observations that the Universe seems to be flat even if it does not have a critical
density have reduced interest in these open inflation models too; see Chapter 18.

7.11.6 Other models

At this point it is appropriate to point out that there are very many inflationary
models about. Indeed, inflation is in some sense a generic prediction of most
theories of the early Universe. We have no space to describe all of these models,
but we can briefly mention some of the most important ones.
Firstly, one can obtain inflation bymodifying the classical Lagrangian for gravity

itself, asmentioned in Chapter 6. If one adds a termproportional toR2 to the usual
Lagrangian, then the equations of motion that result are equivalent to ordinary
general relativity in the presence of a scalar field with some particular action. This
‘effective’ scalar field can drive inflation in the same way as a real field can.
An alternative way to modify gravity might be to adopt the Brans–Dicke (scalar–

tensor) theory of gravity described in Section 3.4. The crucial point here is that an
effective equation of state of the form p = −ρc2 in this theory produces a power-
law, rather than exponential, inflationary epoch. This even allows ‘old inflation’
to succeed: the bubbles which nucleate the new phase can be made to merge and
fill space if inflation proceeds as a power law in time rather than an exponential
(Lucchin and Matarrese 1985). Theories based on Brans–Dicke modified gravity
are usually called extended inflation.
Another possibility relies on the fact that many unified theories, such as super-

gravity and superstrings, are only defined in space–times of considerably higher
dimensionality than those we are used to. The extra dimensions involved in these
theories must somehow have been compactified to a scale of order the Planck
length so that we cannot perceive them now. The contraction of extra spatial
dimensions can lead to an expansion of the three spatial dimensions which must
survive, thus leading to inflation. This is the idea behind so-called Kaluza–Klein
theories.
There are many other possibilities: models with more than one scalar field, with

modified gravity and a scalar field, models based on more complicated potentials,
on supersymmetric GUTs, supergravity and so on. Inflation has led to an almost
exponential increase in the number of inflationary models since 1981!

7.12 Successes and Problems of Inflation

As we have explained, the inflationary model provides a conceptual explanation
of the horizon problem and the flatness problem. It may also rescue grand uni-
fied theories which predict a large present-day abundance of monopoles or other
topological defects.
We have seen how inflationary models have evolved to avoid problems with ear-

lier versions. Some models are intrinsically flawed (e.g. old inflation) but can be
salvaged in somemodified form (extended inflation). The density and gravitational
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wave fluctuations they produce may also be too high for some parameter choices,
as we discuss in Chapter 14. For example, the requirement that density fluctu-
ations be acceptably small places a strong constraint on m in Equation (7.11.1)
corresponding to the chaotic inflationmodel. This, however, requires a fine-tuning
of the scalar field massm which does not seem to have any strong physical moti-
vation. Such fine-tunings are worrying but not fatal flaws in these models.
There are, however, much more serious problems associated with these scenar-

ios. Perhaps the most important is one we have mentioned before and which is
intimately connected with one of the successes. Most inflationary models predict
that spatial sections at the present epoch should be almost flat. In the absence of
a cosmological constant this means that Ω0 � 1. However, evidence from galaxy-
clustering studies suggests this is not the case: the apparent density of matter is
less than the critical density. It is possible to produce a low-density universe after
inflation, but it requires very particular models. On the other hand, one could rec-
oncile a low-density universe with apparently more natural inflationary models
by appealing to a relic cosmological constant: the requirement that spatial sec-
tions should be (almost) flat simply translates into Ω0 +Ω0Λ � 1. This seems to
be that a potentially successful model of structure formation, as well as allowing
accounting for the behaviour of high-redshift supernovae (Chapter 4) and cosmic
microwave background fluctuations (Chapter 18).
One also worries about the status of inflation as a physical theory. To what

extent is inflation predictive? Is it testable? One might argue that inflation does
predict that Ω0 � 1. This may be true, but one can have Ω0 close to unity without
inflation if some process connected with quantum gravity can arrange it. Likewise
one can have Ω0 < 1 either with inflation or without it. Inflationary models also
produce density fluctuations and gravitational waves. If these are observed to have
the correct properties, they may eventually constitute a test of inflation, but this
is not the case at present. All we can say is the COBE fluctuations in the microwave
background do indeed seem to be consistent with the usual inflationary models.
At the moment, therefore, inflation has a status somewhere between a theory and
a paradigm, but we are still a long way from being able to use these ideas to test
GUT scale physics and beyond in any definite way.

7.13 The Anthropic Cosmological Principle

We began this book with a discussion of the importance of the Cosmological Prin-
ciple, which, as we have seen in the first two chapters, has an important role
to play in the construction of the Friedmann models. This principle, in light of
the cosmological horizon problem, has more recently led to the idea of the infla-
tionary universe we have explored in this chapter. The Cosmological Principle is
a development of the Copernican Principle, asserting that, on a large scale, all
spatial positions in the Universe are equivalent. At this point in the book it is
worth mentioning an alternative Cosmological Principle – the Anthropic Cosmo-
logical Principle – which seeks to explore the connection between the physical
structure of the Universe and the development of intelligent life within it. There
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are, in fact, many versions of the Anthropic Principle. The Weak Anthropic Princi-
ple merely cautions that the fact of our own existence implies that we do occupy
some sort of special place in the Universe. For example, as noted by Dicke (1961),
human life requires the existence of heavy elements such as Carbon and Oxy-
gen which must be synthesised by stars. We could not possibly have evolved
to observe the Universe in a time less than or of order the main sequence life-
time of a star, i.e. around 1010 years in the Big Bang picture. This observation is
itself sufficient to explain the large-number coincidences described in Chapter 3
which puzzled Dirac so much. In fact, the Weak Anthropic Principle is not a ‘prin-
ciple’ in the same sense as the Cosmological Principle: it is merely a reminder
that one should be aware of all selection effects when interpreting cosmological
data.
It is important to stress that the Weak Anthropic Principle is not a tautology,

but has real cognitive value. We mentioned in Chapter 3 that, in the steady-state
model, there is no reason why the age of astronomical objects should be related
to the expansion timescaleH−1

0 . In fact, although both these timescales are uncer-
tain, we know that they are equal to within an order of magnitude. In the Big Bang
model this is naturally explained in terms of the requirement that life should
have evolved by the present epoch. The Weak Anthropic Principle therefore sup-
plies a good argument whereby one should favour the Big Bang over the steady
state: the latter has an unresolved ‘coincidence’ that the former explains quite
naturally.
An entirely different status is held by the Strong Anthropic Principle and its

variants. This version asserts a teleological argument (i.e. an argument based
on notions of ‘purpose’ or ‘design’) to account for the fact that the Universe
seems to have some properties which are finely tuned to allow the development
of life. Slight variations in the ‘pure’ numbers of atomic physics, such as the fine-
structure constant, would lead to a world in which chemistry, and presumably
life, as we know it, could not have developed. These coincidences seem to some
physicists to be so striking that only a design argument can explain them. One
can, however, construct models of the Universe in which a weak explanation will
suffice. For example, suppose that the Universe is constructed as a set of causally
disjoint ‘domains’ and, within each such domain, the various symmetries of par-
ticle physics have been broken in different ways. A concrete implementation of
this idea may be realised using Linde’s eternal chaotic inflation model which we
discussed earlier. Physics in some of these domains would be similar to our Uni-
verse; in particular, the physical parameters would be such as to allow the devel-
opment of life. In other domains, perhaps in the vast majority of them, the laws
of physics would be so different that life could never evolve in them. The Weak
Anthropic Principle instructs us to remember that we must inhabit one of the for-
mer domains, rather than one of the latter ones. This idea is, of course, speculative
but it does have the virtue of avoiding an explicitly teleological language.
The status of the Strong Anthropic Principle is rightly controversial and we

shall not explore it further in this book. It is interesting to note, however, that
after centuries of adherence to the Copernican Principle and its developments,
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cosmology is now seeing the return of a form of Ptolemaic reasoning (the Strong
Anthropic Principle), in which man is again placed firmly at the centre of the
Universe.

Bibliographic Notes on Chapter 7

More detailed treatments of elementary particle physics can be found in Chaichian
and Nelipe (1984); Collins et al . (1989); Dominguez-Tenreiro and Quiros (1987);
Hughes (1985); Kolb and Turner (1990) and Roos (1994). A more technical treat-
ment of particle cosmology can be found in Barrow (1983). Weinberg (1988) gives
an authoritative review of the cosmological constant problem. A nice introductory
account of inflation can be found in Narlikar and Padmanabhan (1991) of Linde
(1990); a more technical review is Linde (1984). The definitive treatment of the
anthropic principles is Barrow and Tipler (1986).

Problems

The following problems all concern a simplified model of the history of a flat universe
involving a period of inflation. The history is split into four periods: (a) 0 < t < t3 radiation
only; (b) t3 < t < t2 vacuum energy dominates, with an effective cosmological constant
Λ = 3

4 t
2
3 ; (c) t2 < t < t1 a period of radiation domination; and (d) t1 < t < t0 matter

domination.

1. Show that in epoch (c) ρ(t) = ρr(t) = 3
32πGt

2, and in (d) ρ(t) = ρm(t) = 1
6πGt

2.

2. Give simple analytical formulae for a(t) which are approximately true in these four
phases.

3. Show that, during the inflationary phase (b) the universe expands by a factor

a(t2)
a(t3)

= exp
(
t2 − t3
2t3

)
.

4. Derive an expression for Λ in terms of t2, t3 and ρ(t2).

5. Show that

ρr(t0)
ρm(t0)

= 9
16

(
t1
t0

)2/3
.

6. If t3 = 10−35 s, t2 = 10−32 s, t1 = 104 years and t0 = 1010 years, give a sketch of
loga against log t marking any important epochs.



8

The Lepton Era

8.1 The Quark–Hadron Transition

At very high temperatures, the matter in the Universe exists in the form of a
quark–gluon plasma. When the temperature falls to around TQH � 200–300 MeV
the quarks are no longer free, but become confined in composite particles called
hadrons. These particles are generally short lived (with the exception of the pro-
ton and neutron), so there is only a brief period in which the hadrons flourish.
This period is often called the hadron era, but that is a somewhat misleading term
because the hadrons even in this era do not dominate the energy density of the
Universe. At the energy corresponding to a temperature TQH, the Universe – which
was composed of photons, gluons, lepton–antilepton pairs and quark–antiquark
pairs before – undergoes a (probably first-order) phase transition through which
the quark–antiquark pairs join together to form the hadrons, including pions and
nucleons. In this period pion–pion interactions are very important and, conse-
quently, the equation of state of the hadron fluid becomes very complicated: one
can certainly not apply the ideal gas approximation (Section 7.1) to hadrons in
this era. The end of this era occurs when T � 130 MeV at which point the pions
annihilate.
At a temperature just a little greater than 100 MeV the Universe comprises

three types of pion (π+,π−,π0); small numbers of protons, antiprotons, neutrons
and antineutrons (these particles are no longer relativistic at this temperature);
charged leptons (muons, antimuons, electrons, positrons – the tau leptons will
have annihilated at this stage) and their respective neutrinos (νµ , ν̄µ , νe, ν̄e, ντ ,
ν̄τ ); and photons. At a temperature of T � 130 MeV the π+–π− pairs rapidly anni-
hilate and the neutral pions π0 decay into photons. This is the last act of the brief
era of the hadrons. After this, there remain only leptons, antileptons, photons and
the small excess of baryons (protons and neutrons) that we discussed in relation
to the radiation entropy per baryon in Chapter 5; this, as we have explained, is
probably due to processes which violated baryon number conservation while the
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temperature was around T � 1015 GeV. These baryons have a number density n
given by the Boltzmann distribution:

np(n) � 2
(mp(n)kBT

2π�2

)3/2
exp

(
−mp(n)c2

kBT

)
, (8.1.1)

where the suffixes ‘n’ and ‘p’ denote neutrons and protons, respectively. In Equa-
tion (8.1.1) we have neglected the chemical potential of the protons and neutrons
µp(n); we shall return to this matter in Section 8.2. From Equation (8.1.1) one finds
that the ratio between the numbers of protons and neutrons is

nn
np

�
(
mn

mp

)3/2
exp

(
− Q
kBT

)
� exp

(
− Q
kBT

)
, (8.1.2)

where

Q = (mn −mp)c2 � 1.3 MeV (8.1.3)

is the difference in rest-mass energy between ‘n’ and ‘p’, corresponding to a tem-
perature Tpn ≡ Q/kB � 1.5 × 1010 K. For T � Tpn, the number of protons is
virtually identical to the number of neutrons.

8.2 Chemical Potentials

Throughout this chapter we shall need to keep track of the effective number of
particle species which are relativistic at temperature T . This is done through the
quantity g∗(T), the number of degrees of freedom as a function of temperature.
We need to consider thermodynamic aspects of the particle interactions in order
to make progress. In particular we need to consider the chemical potentials µ rel-
evant to the different particle species. Recall that the chemical potential, roughly
speaking, defines the way in which the internal energy of a system changes as the
number of particles is changed.
In the case of an ideal gas the chemical potential µi for the ith particle type

(which we assume to have statistical weight gi) affects the equilibrium number
density ni according to

ni = gi
2π2�3

∫∞

0

[
exp

(
pc − µi
kBT

)
± 1

]−1
p2 dp, (8.2.1)

where the ‘+’ sign applies to fermions, and the ‘−’ sign to bosons. The existence
of a non-zero chemical potential signifies the existence of degeneracy. It is a basic
tenet of the theory of statistical mechanics that one conserves the chemical poten-
tials of ingoing and outcoming particles during a reaction when the reaction is in
equilibrium; also, the chemical potential of photons is zero.
In what follows we shall assume that the appropriate chemical potentials

describing the thermodynamics of the particle interactions are zero. It is nec-
essary to make some remarks to justify this assumption. As we shall see, the
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reason for this is basically founded upon the conservation of electric charge Q,
baryon number B and lepton numbers Le and Lµ (the former for the electron, the
latter for the muon). For simplicity we shall omit other lepton families, although
there is one more lepton called the tau particle. As we have already stated, B and
L are conserved in any reaction after the GUT phase transition at TGUT.
Let us now consider the hadron era (T � 102 GeV). We take the contents of the

Universe to be hadrons (nucleons and pions), leptons and photons. These particles
interact via electromagnetic interactions such as

p+ p̄ � n+ n̄ � π+ +π− � µ+ + µ− � e+ + e− � π0 � 2γ, (8.2.2)

weak interactions, such as

e− + µ+ � νe + νµ, e− + p� νe + n, µ− + p � ν̄µ + n, · · · , (8.2.3a)
e+ + e− � νe + ν̄e, e± + νe � e± + νe, · · · , (8.2.3b)

and the hadrons undergo strong interactions with each other. The relevant cross-
section for the electromagnetic interactions is the Thomson cross-section, whose
value in electrostatic units is given by

σT = 8π
3

(
e2

mc2

)2
� 6.65× 10−25

(
me

m

)2
cm2, (8.2.4)

where m is the mass of a generic particle. The weak interactions have a cross-
section

σwk � g2wk
[
kBT
(�c)2

]2
, (8.2.5)

in which (gwk is the weak interaction coupling constant which takes a value gwk �
1.4× 1049 erg cm3). The electromagnetic and weak interactions guarantee that in
this period there is thermal equilibrium between these particles, because τH �
τcoll. Later on, we shall verify this condition for the neutrinos.
From (8.2.2) and Equations (8.2.3a) and (8.2.3b) it is clear that the chemical

potentials of particles and antiparticles must be equal in magnitude and opposite
in sign, and that the chemical potential forπ0 must be zero. The other thing to take
into account when determining µi is the set of conserved quantities wementioned
above: electric charge Q, baryon number B and lepton numbers Le and Lµ . Recall
that p and n (p̄ and n̄) have B = 1 (−1); e− and νe (e+ and ν̄e) have Le = 1 (−1); µ+
and νµ (µ− and ν̄µ) have Lµ = 1 (−1); also B ≠ 0 implies Le = Lµ = 0 and so on.
In particular, we assume that the chemical potentials of all the particle species
are zero. For simplicity, let us neglect the pions and their corresponding strong
interactions; more detailed treatments show that this is a good approximation.
The conservation of Q requires

nQ = (np +ne+ +nµ+)− (np̄ +ne− +nµ−) = 0, (8.2.6)

so that the Universe is electrically neutral. Introducing the function

f(x) =
∫∞

0
{[exp(y − x)+ 1]−1 − [exp(y + x)+ 1]−1}y2 dy, (8.2.7)
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which is symmetrical about the origin and in which the dimensionless quantities
xi = µi/kBT are called the degeneracy parameters, Equation (8.2.6) becomes

f(xp)+ f(xe+)+ f(xµ+) = 0. (8.2.8)

The conservation of B, valid from the epoch we are considering until the present
time, yields

nBa3 = π−2
(
kBT
�c

)3
[f (xp)+ f(xn)]a3 = n0Ba30. (8.2.9)

Introducing the radiation entropy per baryon σrad we discussed in Chapter 5, this
becomes

σ−1
radn0γa

3
0 � σ−1

rad

(
kBT0ra0

�c

)3
� σ−1

rad

(
kBTa

�c

)3
, (8.2.10)

because the high value of σrad means that T0ra0 � Ta. This relation is therefore
equivalent to

f(xp)+ f(xn) � σ−1
0r � 0. (8.2.11)

As far as Le and Lµ are concerned, we shall assume that the density of the appro-
priate lepton numbers are very small, as is the baryon number density. We shall
justify this approximation for the leptons only partially, and in an a posteriori
manner, when we look at nucleosynthesis. The assumption is nevertheless quite
strongly motivated in the framework of GUT theories in which one might expect
the lepton and baryon asymmetries to be similar. In analogy with Equation (8.2.11)
we therefore have

f(xe+)+ 1
2f(xν̄e) � 0, (8.2.12a)

f(xµ)+ 1
2f(xνµ) � 0, (8.2.12b)

where the factor 1
2 comes from the relation gµ = ge = 2gν = 2. From Equa-

tion (8.2.3) and from the relation µi = −µī we have

xn = xp − xe+ + xν̄e , (8.2.13a)

xµ+ = xe+ − xν̄e + xνµ , (8.2.13b)

which, with Equations (8.2.9)–(8.2.12), furnishes a set of six equations for the six
unknowns xp, xn, xe+ , xµ+ , xν̄e , xνµ . If this system has a solution x∗

i (i = p, n,
e+, µ+, ν̄e, νµ), then it also admits the symmetric solution −x∗

i . To have physical
significance, however, the solution must be unique; this means that x∗

i = 0. The
six chemical potentials we have mentioned and, therefore, the others related to
them by symmetry, are all zero.
Before ending this discussion it is appropriate to underline again the fact that

the hypothesis that we can neglect the lepton number density with respect to
nγ is only partially justified by the observations of cosmic abundances which
the standard nucleosynthesis model predicts and which we discuss later in this
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chapter. The greatest justification for this hypothesis is actually the enormous
simplification one achieves by using it, as well as a theoretical predisposition
towards vanishing Le and Lµ (as with B) on grounds of symmetry, particularly
in the framework of GUTs. One can, however, obtain a firm upper limit on the
chemical potential of the cosmic neutrino background from the condition that
the global value of Ω0 cannot be greater than a few. Assuming that there are
only three neutrino flavours, and that neutrinos are massless, one can derive the
following constraint: ∑3

i=1 µ4νi,0
8π2(�c)3

� ρ0νc2 < 2ρ0cc2. (8.2.14)

This limit corresponds to a present value of the degeneracy parameter which is
much greater than we suggested above: if the µνi,0 are all equal, and if T0νi � 2 K
(as we will find later), this limit corresponds to a degeneracy parameter of the
order of 40.

8.3 The Lepton Era

The lepton era lasts from the time the pions either annihilate or decay into pho-
tons, i.e. from Tπ � 130 MeV � 1012 K, to the time in which the e+ − e− pairs
annihilate at a temperature Te � 5 × 109 K � 0.5 MeV. At the beginning of the
lepton era the Universe comprises photons, a small number of baryons and the
leptons e−, e+, µ+, µ− (and probably τ+ and τ−), with their respective neutrinos.
If the τ particles are much more massive than muons, then they will already have
annihilated by this epoch, but the corresponding neutrinos will remain. Neglect-
ing the (non-relativistic) baryon component, the number of degrees of freedom at
the start of the lepton era is g∗(T < Tπ) = 4× 2× 7

8 +Nν × 2× 7
8 + 2 � 14.25 (if

the number of neutrino types is Nν = 3), corresponding to a cosmological time
tπ � 10−5 s. We will study the Universe during the lepton era under the hypothesis
which we have just discussed in the previous section, namely that all the relevant
chemical potentials are zero.
At the start of the lepton era, all the constituent particles mentioned above

are still in thermal equilibrium because the relevant collision time τcoll is much
smaller than τH, the Hubble time. For example, at T � 1011 K (t � 10−4 s) the
collision time between photons and electrons is τcoll � (σTnec)−1 � 10−21 s. The
same can be said for the neutrinos for T > 1010 K, which is the temperature at
which they decouple from the rest of the Universe as we shall show.
Other important facts during the lepton era are the annihilation of muons at

Tµ < 1012 K, which happens early on, the annihilation of the electron–positron
pairs, which happens at the end, and cosmological nucleosynthesis, which begins
at around T � 109 K, at the beginning of the radiative era. Because the conditions
for nucleosynthesis are prepared during the lepton era, we shall cover nucleosyn-
thesis in this chapter, rather than in the next.
During the evolution of the Universe we assume that entropy is conserved for

components still in thermal equilibrium. This hypothesis is justified by the slow
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rate of the relevant processes: one has to deal with phenomena which are essen-
tially reversible adiabatic processes. The relativistic components contribute vir-
tually all of the entropy in a generic volume V , so that

S = (ρc
2 + p)V
T

= 4
3
ρc2V
T

= 4
3g

∗(T)12σT
3V. (8.3.1)

If pair annihilation occurs at a temperature T , for example the electron–positron
annihilation at Te, then let us indicate with the symbols (−) and (+) appropriate
quantities before and after T . From conservation of entropy we obtain

S(−) = 2
3g

∗
(−)σT

3
(−)V = S(+) = 2

3g
∗
(+)σT

3
(+)V . (8.3.2)

Because of the removal of the pairs we have g∗(+) < g
∗
(−) and, therefore,

T(+) =
(g∗(−)
g∗(+)

)1/3
T(−) > T(−) : (8.3.3)

the annihilation of the pairs produces an increase in the temperature of the com-
ponents which remain in thermal equilibrium. For this reason the relation T ∝ a−1
is not exact: the correct relation is of the form

T = TPa(tP)a(t)

[
g∗(TP)
g∗(T)

]1/3
, (8.3.4)

where TP is the Planck temperature and tP the Planck time. However, the error in
using the simpler formula is small because g∗(T) never changes by more than an
order of magnitude, while T changes by more than 30 orders of magnitude. For
this reason Equation (8.3.4) reduces in practice to T ∝ a−1.

8.4 Neutrino Decoupling

Before the annihilation of µ+–µ− pairs at T � 1012 K, the Universe is composed
mainly of e−, e+, µ−, µ+, νe, ν̄e, νµ , ν̄µ , ντ , ν̄τ and γ. The neutrinos are still in
thermal equilibrium through scattering reactions of the form

νe + µ− � ν̄µ + e−, ν̄µ + µ+ � νe + e+, · · · . (8.4.1)

For this reason the relevant cross-section is σwk mentioned above. When the rate
of these interactions falls below the expansion rate they can no longer main-
tain equilibrium and the neutrinos become decoupled. The condition for neutrino
decoupling to occur is therefore

τH = a
ȧ
� 2t � 2

(
3

32πGρ

)1/2
< τcoll � 1

nlσwkc
, (8.4.2)
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where nl is the number density of a generic lepton, given by

nl � 0.1〈gl〉
(
kBT
�c

)3
� 0.2

(
kBT
�c

)3
(8.4.3)

(〈gl〉 is the mean statistical weight of the leptons), while ρ is given by

ρ � g∗(T)σT
4

2
� 5π2

12

(
kBT
�c

)3
kBT � 4

(kBT)4

(�c)3
. (8.4.4)

The condition (8.4.2) therefore becomes

τH
τcoll

� 5× 10−2G−1/2(�c)−11/2cg2wk(kBT)
3 �

(
T

3× 1010 K

)3
< 1 : (8.4.5)

neutrino decoupling is then at Tdν � 3× 1010 K. It is noteworthy that in any case
the decoupling of the neutrinos happens after the annihilation of the µ+–µ− pairs
and before the annihilation of the e+–e− pairs: this is important for calculating
the properties of the cosmic neutrino background, as we show in the next section.

8.5 The Cosmic Neutrino Background

At the time of their decoupling, the temperature of the neutrinos coincides with
the temperature T of the other constituents of the Universe which are still in
thermal equilibrium: e+, e− and γ. The neutrino ‘gas’ then expands adiabatically
because no other component is in thermal contact with it: for such a gas one can
assume an equation of state appropriate for radiative matter and one therefore
finds the relation

Tν = Tdν a(tdν)a
. (8.5.1)

Until the moment of e+–e− annihilation, the ‘gas’ composed of e−, e+ and γ also
follows a law identical to Equation (8.5.1). The temperature T suffers an increase
at the moment of pair annihilation, as was explained in Section 8.3. Applying
Equation (8.3.3) one finds that at Te � 5× 109 K the temperature T (which now is
just Tr) becomes

Tr = T = (114 )1/3T(−) � 1.4T(−) = 1.4Tν, (8.5.2)

because for T > Te one has g∗(−) = 11
2 , while for T < Te we have g∗(+) = 2 (just

photons). After pair annihilation the photon gas expands adiabatically and, for
high values of σ0r, we get

T = Tr � T(+) a(Te)a . (8.5.3)

One thus finds that the temperature of the radiation background remains a fac-
tor of (11/4)1/3 higher than the temperature of the neutrino background. One
therefore finds

T0ν = ( 4
11)

1/3T0r � 1.9 K, (8.5.4)
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corresponding to a number density

n0ν = Nν × 2× gν × 3
4
ζ(3)
π2

(
kBT0ν

�c

)3
� Nν108 cm−3 (8.5.5)

and to a density

ρ0ν = Nν × 2× gν × 7
8

σT 40ν
2c2

� Nν × 10−34 g cm−3, (8.5.6)

to be compared with the analogous quantities for photons

n0γ � 420 cm−3 � 3.7N−1
ν n0ν, (8.5.7)

ρ0γ � 4.8× 10−34 g cm−3 � 4.8N−1
ν ρ0ν. (8.5.8)

As we have explained, the number of neutrino species is probably Nν = 3; consid-
erations based on cosmological nucleosynthesis have for some time ruled out the
possibility that Nν > 4–5. In the case Nν = 3, where we have νe, νµ and ντ along
with their respective antineutrinos, we get n0γ � n0ν and ρ0γ � ρ0ν . We stress
again that all these results are obtained under the assumption that the neutrinos
are not degenerate and that they are massless.
Let us now discuss what happens to the cosmic neutrino background if the neu-

trinos have a mean mass of order 10 eV, parametrised by 〈mν〉 =
∑Nν
i=1mνi/Nν .

After decoupling, the number of neutrinos in a comoving volume does not change
so that Equation (8.5.5) is still valid; this is due to the fact that for T � Tdν the
neutrinos are still ultrarelativistic, so that the above considerations are still valid.
We therefore obtain

ρ0ν = 〈mν〉n0ν � 1.92×Nν × 〈mν〉
10 eV

× 10−30 g cm−3, (8.5.9)

corresponding to a density parameter

Ω0ν � 0.1×Nν 〈mν〉
10 eV

× h−2 � 1; (8.5.10)

the Universe would be dominated by neutrinos.
In the case of massive neutrinos, the quantity T0ν is not so much a physical

temperature, but more a kind of ‘counter’ for the number of particles; we shall
come back to this shortly. The distribution function for neutrinos (number of
particles per unit volume in a unit range of momentum) fν before the time tdν
(which we suppose, for simplicity, is the same for all types) is the relativistic one
because Tdν � mνc2/3kB = Tnν � 1.3 × 105(mν/10 eV) K (the epoch in which
T � Tnν indicates the passage from the era when the neutrinos are relativistic
to the era when they are no longer relativistic; in the above approximation this
happens a little before equivalence). We therefore obtain

fν ∝
[
exp

(
pνc
kBTν

)
+ 1

]−1
, (8.5.11)
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where pν is the neutrino momentum. After decoupling, because the neutrinos
undergo a free expansion, one has pν ∝ a−1 and the neutrino distribution is still
described by Equation (8.5.11) if one uses the counter

Tν = Tν(tdν)a(tdν)a(t)
= ( 4

11)
1/3T . (8.5.12)

Notice that the ‘temperature’ varies as a−1 for the neutrinos, just as it does for
radiation. As we mentioned above, this is not really a true physical temperature
because the neutrinos are no longer relativistic at low redshifts, though their ‘tem-
perature’ still varies in the same way as radiation. On the other hand, initially cold
(non-relativistic) particles would have T ∝ a−2 in this regime due to the adiabatic
expansion.
The energy density of neutrinos for T < Tdν is given by

ρν � Nν × 2× gν × 7
8
σ
2

T 4ν
c2

� Nνργ
4.4

∝ (1+ z)4, (8.5.13)

for Tν = ( 4
11)

1/3Tr � Tnν � Teq, while it is evident that

ρν � ρ0ν
(
Tν
T0ν

)3
∝ (1+ z)3, (8.5.14)

for Tν  Tnν .
Recent experimental measurements, such as those from SuperKamiokande

(Fukuda et al . 1999) suggest that at least one of the neutrino flavours must have
a non-zero mass. The physics behind these measurements stems from the reali-
sation that the energy (or mass) eigenstates of the neutrinos might not coincide
with the states of pure lepton number; a similar phenomenon called Cabibbo mix-
ing occurs with quarks. To illustrate, let us consider only the electron neutrino
νe and the muon version νµ . These are the lepton states with Le = 1 and Lµ = 1,
respectively. In general one might imagine that these are combinations of the
mass eigenstates which we can call ν1 and ν2:

(
νe
νµ

)
=
(
cosθ sinθ
− sinθ cosθ

)(
ν1
ν2

)
, (8.5.15)

where θ is a mixing angle. That means that a state of pure electron neutrino is a
superposition of the ν1 and ν2 states:

|νe〉 = cosθ|ν1〉 + sinθ|ν2〉. (8.5.16)

If the eigenvalues of the two energy eigenstates are E1 and E2, respectively, then
the state will evolve according to

|νe(t)〉 = cosθ|ν1〉 exp(−iE1t/�)+ sinθ|ν2〉 exp(−iE2t/�). (8.5.17)
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It then follows that the probability of finding a pure electron neutrino state a time
t after it is set up is

P(t) = 1− sin2(2θ) sin2[12(E1 − E2)t/�], (8.5.18)

hence the term neutrino oscillation: the particle precesses between electron–
neutrino and mu–neutrino states. If both states have the same momentum, then
the energy difference is just

E2 − E1 = (m
2
2 −m2

1)c4

2E
= ∆m2c4

2E
, (8.5.19)

where E = (E1 + E2)/2. This then leads to a neat alternative form to (8.5.18),

P(t) = 1− sin2(2θ) sin2
(
πR
L

)
, (8.5.20)

for a beam of electron neutrinos travelling a distance R. The quantity L is the
oscillation length

L = 4πE�

∆m2c3
, (8.5.21)

which gives the typical scale of the oscillations. Note that oscillations do not occur
if the two neutrinos have equal mass. The mixing length (8.5.21) is typically very
large, so the best experiments involve solar neutrinos (produced by nuclear reac-
tions in the Sun’s core) or atmospheric neutrinos (produced by cosmic ray colli-
sions in the atmosphere). Recent results agree on a positive detection, but there
is some uncertainty in the neutrino masses that can be involved and also whether
all three neutrino species (including the tau) can be massive. It seems unlikely,
however, that the neutrinos have masses around 10 eV, which is the mass they
would have to have in order to contribute significantly to the critical density.

8.6 Cosmological Nucleosynthesis

8.6.1 General considerations

We begin our treatment of cosmological nucleosynthesis in the framework of the
Big Bang model with some definitions and orders of magnitude. We define the
abundance by mass of a certain type of nucleus to be the ratio of the mass con-
tained in such nuclei to the total mass of baryonic matter contained in a suitably
large volume. The abundance of 4He, usually indicated with the symbol Y , has a
value Y � 0.25, obtained from various observations (stellar spectra, cosmic rays,
globular clusters, solar prominences, etc.) or about 6% of all nuclei. The abun-
dance of 3He corresponds to about 10−3Y , while that of deuterium D (2H or, later
on, d), is of order 2× 10−2Y .
In the standard cosmological model the nucleosynthesis of the light elements

(that is, elements with nuclei no more massive than 7Li) begins at the start of the
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radiative era. Nucleosynthesis of the elements of course occurs in stellar interiors,
during the course of stellar evolution. Stellar processes, however, generally involve
destruction of 2Hmore quickly than it is produced, because of the very large cross-
section for photodissociation reactions of the form

2H+ γ � p+ n. (8.6.1)

Nuclei heavier than 7Li are essentially onlymade in stars. In fact there are no stable
nuclei with atomic weight 5 or 8 so it is difficult to construct elements heavier
than helium by means of p+α and α+α collisions (α represents a 4He nucleus).
In stars, however, α + α collisions do produce small quantities of unstable 8Be,
from which one can make 12C by 8Be+α collisions; a chain of synthesis reactions
can therefore develop leading to heavier elements. In the cosmological context,
at the temperature of 109 K characteristic of the onset of nucleosynthesis, the
density of the Universe is too low to permit the synthesis of significant amounts
of 12C from 8Be + α collisions. It turns out therefore that the elements heavier
than 4He are made mostly in stellar interiors. On the other hand, the percentage
of helium observed is too high to be explained by the usual predictions of stellar
evolution. For example, if our Galaxy maintained a constant luminosity for the
order of 1010 years, the total energy radiated would correspond to the fusion of
1% of the original nucleons, in contrast to the 6% which is observed.
It is interesting to note that the difficulty in explaining the nucleosynthesis of

helium by stellar processes alone was recognised by Gamow (1946) and by Alpher
et al . (1948), who themselves proposed a model of cosmological nucleosynthesis.
Difficulties with this model, in particular an excessive production of helium, per-
suaded Alpher and Herman (1948) to consider the idea that there might have been
a significant radiation background at the epoch of nucleosynthesis; they estimated
that this background should have a present temperature of around 5 K, not far
from the value it is now known to have (T0r � 2.73 K), although some 15 years
were to pass before this background was discovered. For this reason one can
safely say that the satisfactory calculations of primordial element abundances
which emerge from the theory represent, along with the existence of the cosmic
microwave background, one of the central pillars upon which the Big Bang model
is based.

8.6.2 The standard nucleosynthesis model

The hypotheses usually made to explain the cosmological origin of the light ele-
ments are as follows.

1. The Universe has passed through a hot phase with T � 1012 K, during which
its components were in thermal equilibrium.

2. General Relativity and known laws of particle physics apply at this time.

3. The Universe is homogeneous and isotropic at the time of nucleosynthesis.

4. The number of neutrino types is not high (in fact we shall assume Nν � 3).
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5. The neutrinos have a negligible degeneracy parameter.

6. The Universe is not composed in such a way that some regions contain mat-
ter and others antimatter.

7. There is no appreciable magnetic field at the epoch of nucleosynthesis.

8. The density of any exotic particles (photinos, gravitinos, etc.) at Te is negli-
gible compared with the density of the photons.

As we shall see, these hypotheses agree pretty well with such facts as we know.
The hypothesis (3) is made because at the moment of nucleosynthesis, T∗ � 109 K
(t∗ � 300 s), the mass of baryons contained within the horizon is very small,
i.e. ∼ 103M�, while the light-element abundances one measures seem to be the
same over scales of order tens of Mpc; the hypotheses (4) and (8) are necessary
because an increase in the density of the Universe at the epoch of nucleosynthesis
would lead, as we shall see, to an excessive production of helium; the hypothe-
sis (6) is made because the gamma rays which would be produced at the edges
where such regions touch would result in extensive photodissociation of the 2H,
and therefore a decrease in the production of 4He.
Later on, we shall discuss briefly some of the consequences on the nucleosyn-

thesis process of relaxing or changing some of these assumptions.

8.6.3 The neutron–proton ratio

In Section 8.1 we stated that the ratio between the number densities of neutrons
and protons is given by the relation

nn
np

� exp
(
− Q
kBT

)
= exp

(
−1.5× 1010 K

T

)
(8.6.2)

as long as the protons and neutrons are in thermal equilibrium. This equilibrium
is maintained by the weak interactions

n+ νe � p+ e−, n+ e+ � p+ ν̄e, (8.6.3)

which occur on a characteristic timescale τcoll of order that given by Equa-
tion (8.4.2); this timescale is much smaller than τH for T � Tdν � 1010 K, i.e. until
the time when the neutrinos decouple. At tdν the ratio

Xn = n
n+ p � n

ntot
(8.6.4)

turns out to be, from Equation (8.6.2),

Xn(tdν) � [1+ exp(1.5)]−1 � 0.17 = Xn(0). (8.6.5)

More accurate calculations (taking into account the only partial efficiency of the
above reactions) lead one to the conclusion that the ratio Xn remains equal to the
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equilibrium value until Tn � 1.3× 109 K (tn � 20 s), after which the neutrons can
only transform into protons via the β-decay, n → p + e− + ν̄e, which has a mean
lifetime τn of order 900 s. After tn the ratio Xn thus varies according to the law
of radioactive decay:

Xn(t) ≡ Xn(0) exp
(
−t − tn
τn

)
� Xn(0), (8.6.6)

for t − tn � t < τn; the value of Xn remains frozen at the value Xn(0) � 0.17 for
the entire period we are interested in. As we shall see, nucleosynthesis effectively
begins at t∗ � 102 s.
When the temperature is of order Tn, the relevant components of the Universe

are photons, protons and neutrons in the ratio n/p � exp(−1.5) � 0.2, corre-
sponding to the value Xn(0), and small amounts of heavier particles (besides the
neutrinos which have already decoupled). The electrons and positrons annihilate
at Te � 5 × 109 K; the annihilation process is not very important for nucleosyn-
thesis, it merely acts as a marker of the end of the lepton era and the beginning
of the radiative era.

8.6.4 Nucleosynthesis of Helium

To build nuclei with atomic weight A � 3 one needs to have a certain amount of
deuterium. The amount created is governed by the equation

n+ p � d+ γ; (8.6.7)

one can easily verify that this reaction has a characteristic timescale τcoll  τH
in the period under consideration. The particles n, p, d and γ therefore have a
number density given by the statistical equilibrium relations under the Boltzmann
approximation:

ni � gi
(
mikBT
2π�2

)3/2
exp

(
µi −mic2

kBT

)
, (8.6.8)

with i = n, p, d and gn = gp = 2gd/3 = 2. For the chemical potentials we take the
relationship already mentioned in Section 8.2, giving

µn + µp = µd. (8.6.9)

It is perhaps a good time to stress that the chemical potentials of these particles
are negligible when nn � nn̄ and np � np̄, but this is certainly not the case at the
present epoch, because the thermal conditions are now very different.
It is useful to introduce, alongside Xn, another quantity Xp = p/ntot � 1 − Xn

andXd = d/ntot. From Equations (8.6.7) and (8.6.8), one can derive the equilibrium
relations between n, p and d:

Xd � 3
ntot

(
mdkBT
2π�2

)3/2
exp

[µn + µp − (mn +mp)c2 + Bd
kBT

]
, (8.6.10)
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which can be expressed as

Xd � ntot
(
md

mnmp

)3/2 3
4

(
kBT
2π�2

)−3/2
XnXp exp

(
Bd
kBT

)
, (8.6.11)

and consequently as

Xd � XnXp exp
[
−29.33+ 25.82

T9
− 3

2 lnT9 + ln(Ω0bh2)
]
, (8.6.12)

where T9 = (T/109 K), Ω0b is the present density parameter in baryonic material.
In (8.6.12), Bd is the binding energy of deuterium:

Bd = (mn +mp −md)c2 � 2.225 MeV � 2.5× 1010 K. (8.6.13)

The function Xd depends only weakly on Ωh2.
For T9 � 10 the value of Xd is negligible: all the nucleons are still free because

the high energy of the ambient photons favours the photodissociation reaction.
The fact that nucleosynthesis cannot proceed until Xd grows sufficiently large
is usually called the deuterium bottleneck and is an important influence on the
eventual helium abundance. The value of Xd is no longer negligible when T9 � 1.
At T∗

9 � 0.9 for Ω = 1 (t∗ � 300 s) or at T∗
9 � 0.8 for Ω � 0.02 (t∗ � 200 s) Xd �

XnXp. For T < T∗
9 the value of Xd becomes significant. At lower temperatures all

the neutronsmight be expected to be captured to form deuterium. This deuterium
does not appear, however, because reactions of the form

d+ d → 3He+ n, 3He+ d → 4He+ p, (8.6.14)

which have a large cross-section and are therefore very rapid, mop up any free
neutrons into 4He. Thus, the abundance of helium that forms is

Y � Y(T∗) = 2Xn(T∗) = 2Xn(Tn) exp
(
−t

∗ − tn
τn

)
� 0.25, (8.6.15)

in reasonable accord with that given by observations. In Equation (8.6.13), the
factor 2 takes account of the fact that, after helium synthesis, there are practically
only free protons and helium nuclei, so that

Y = mHe

mtot
= 4
nHe
ntot

� 4× 1
2
nn
ntot

= 2Xn. (8.6.16)

The value of Y obtained is roughly independent of Ω. This is essentially due to
two reasons:

1. the value of Xn before nucleosynthesis does not depend on Ω because it is
determined by weak interactions between nucleons and leptons and not by
strong interactions between nucleons; and

2. the start of nucleosynthesis is determined by the temperature rather than
the density of the nucleons.
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Figure 8.1 Light-element abundance determined by numerical calculations as functions
of the matter density, as explained in the text. The arrows mark the possible deuterium
abundance. From Schramm and Turner (1996). Picture courtesy of Mike Turner.

8.6.5 Other elements

As far as the abundances of other light elements are concerned one needs to
perform a detailed numerical integration of all the rate equations describing the
reaction network involved in building up heavier nuclei than 4He. We have no
space to discuss the details of these calculations here, but the main results are
illustrated in Figure 8.1.
The figure shows the computed abundance of 4He (usually denoted by YP),

depending on the number of neutrino types. Note that some helium is certainly
made in stars so that a correction must be made to the observed abundance Y
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in order to estimate the primordial abundance which is YP. The error bar on the
central line indicates the effect of an error of ±0.2 min in the neutron half-life.
The other curves show the relative abundances (compared with 1H) of deuterium
D, 3He, 3He + D and 7Li. The abundances are all shown as a function of η, the
baryon-to-photon ratio which is related to Ωb by Ωb � 0.004h−2η/10−10.
The abundances of deuterium and 3He are about three orders of magnitude

below 4He, while 7Li is nine orders of magnitude smaller than this; all other nuclei
are less abundant than this. The basic effect one can see is that, since the abun-
dance of 4He increases slowly with η (because nucleosynthesis starts slightly ear-
lier and burning into 4He is more complete), the abundances of the ‘incomplete’
products D and 3He decrease in compensation. The abundance of 7Li is more com-
plicated because of the two possible formation mechanisms: direct formation via
fusion of 4He and 3H dominates at low η, while electron capture by 7Be dominates
at high η. In between, the ‘dip’ is caused by the destruction reaction involving
proton capture and decay into two 4He nuclei.
So how do these computations compare with observations? At the outset we

should stress that relevant observational data in this field are difficult to obtain.
The situation with regard to 4He is perhaps the clearest but, although the expected
abundance is large, the dependence of this abundance on cosmological parame-
ters is not strong. Precise measurements are therefore required to test the theory.
For the other elements shown in Figure 8.1, the parameter dependence is strong
and is dominated by the dependence on η, but the expected abundances, as we
have shown, are tiny. Moreover, any material we can observe has been at least
partly processed through stars. Burning of H into 4He is the main source of energy
for stars. Deuterium can be very easily destroyed in stars (but cannot be made
there). The other isotopes 3He and 7Li can be both created and destroyed in stars.
The processing of material by stars is called astration and it means that uncertain
corrections have to be introduced to derive ‘primordial’ abundances from present-
day observations. One should also mention that fractionation (either physical or
chemical in origin) may mean that the abundances in one part of an astronomical
object may not be typical of the object as a whole; such effects are known to be
important, for example, in determining the abundance of deuterium in the Earth’s
oceans.
Despite these difficulties, there is a considerable industry involved in compar-

ing observed abundances with these theoretical predictions. Relevant data can
be obtained from stellar atmospheres, interstellar emission and absorption lines
(and intergalactic ones), planetary atmospheres, meteorites and from terrestrial
measurements. Abundances of elements other than 4He determined by these dif-
ferent methods differ by a factor of five or more, presumably because of astration
and/or fractionation.

8.6.6 Observations: Helium 4

It is relatively well established that the abundance of 4He is everywhere close to
25% and this in itself is good evidence that the basic model is correct. To get
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the primordial helium abundance more accurately than this rough figure, it is
necessary to correct for the processing of hydrogen into helium in stars. This is
generally done by taking account of the fact that stars with higher metallicity have
a slightly higher 4He abundance, and extrapolating to zero metallicity; metals are
assumed to be a byproduct of the fusion of hydrogen into helium. One there-
fore generally requires an index of metallicity in the form of either O/H or N/H
determinations. Good data on these abundances have been obtained for around
50 extragalactic HII regions (Pagel et al . 1992; Skillman et al . 1993; Izotov et al .
1994). Olive and Steigman (1995) and Olive and Scully (1995), for example, have
found on the basis of these data that there is evidence for a linear correlation of
Y with O/H and N/H; the intercept of this relation yields

Yp = 0.234± 0.003± 0.005. (8.6.17)

The first error is purely statistical and the second is an estimate of the systematic
uncertainty in the abundance determinations.

8.6.7 Observations: Deuterium

The abundance of deuterium has been the subject of intense investigation in
recent months. Prior to this period, deuterium abundance information was based
on interstellar medium (ISM) observations and Solar System data. From the ISM,
one gets

D/H � 1.60× 10−5 (8.6.18)

with an uncertainty of about 10% (Linsky et al . 1993, 1995). This value may or may
not be close to universal, as it is possible that the abundances in the ISM are inho-
mogeneous. Solar System investigations based on properties of meteoritic rock
involve a more circuitous route through 3He (which one assumes was efficiently
burned into D during the pre-main-sequence phase of the Sun). This argument
leads to a value of

(D/H)� � 2.6× 10−5 (8.6.19)

with an uncertainty of nearly 100% (Scully et al . 1996).
More recently, the rough consensus between these two estimates was shaken

by claims of detections of deuterium absorption in the spectra of high-redshift
quasars. The occurrence of gas at high redshift and in systems of low metallicity
suggests that one might well expect to see a light-element abundance close to the
primordial value. The first such observations yielded much higher values than
(8.6.18) and (8.6.19) by about a factor of 10 (Carswell et al . 1994; Songaila et al .
1994), i.e.

(D/H) � 2× 10−4; (8.6.20)

other measurements seemed to confirm these high values (Rugers and Hogan
1996a,b; Carswell et al . 1996; Wampler et al . 1996).
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On the other hand, significantly lower deuterium abundances have been found
by other workers in similar systems (Tytler et al . 1996; Burles and Tytler 1996).
This raises the suspicion that the high inferred deuterium abundances may be
a mistake, perhaps from a misidentified absorption feature (e.g. Steigman 1994).
On the other hand, one does expect deuterium to be destroyed by astration and,
on these grounds, one is tempted to identify the higher values of D/H with the
primordial value.
Over the last few years, evidence has gathered that the low deuterium abun-

dance is more secure and that previous high values may have been due to obser-
vational problems. The recent published estimate by Burles and Tytler gives

(D/H) � (3.3± 0.6)× 10−5, (8.6.21)

although this may not be the end of the story.

8.6.8 Helium 3

There are various ways in which the primordial 3He abundance can be estimated.
For a start, the Solar System deuterium estimate entails an estimate of the 3He
abundance which generally comes out around 1.5 × 10−5. ISM observations and
galactic HII regions yield values with a wide dispersion:

(3He/H) � 2.5× 10−5; (8.6.22)

the spread is around a factor of 2 either side of this value.
The primordial 3He, however, is modified by the competition between stel-

lar production and destruction processes, and a detailed evolution model is
required to relate the observed abundances, themselves highly uncertain, with
their inferred primordial values. As we mentioned above, one may be helped in
this task by using the combined abundance of D and 3He (e.g. Steigman and Tosi
1995). The simplest way to use these data employs the argument that when deu-
terium is processed into stars it is basically turned into 3He, which can be pro-
cessed further, but which burns at a higher temperature. Stars of different masses
therefore differ in their net conversion between these two species. But since all
stars do destroy deuterium to some extent and at least some 3He survives stellar
processing, the primordial combination of D + 3He might well be expected to be
bounded above by the observed value. Attempts to go further introduce further
model-dependent parameters and corresponding uncertainties into the analysis.
For reference, a rough figure for the combined abundance is

(D+ 3He)/H � 4.1× 10−5, (8.6.23)

with an uncertainty of about 50%.
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8.6.9 Lithium 7

In old hot stars (Population II), the lithium abundance is found to be nearly uni-
form (Molaro et al . 1995; Spite et al . 1996). Indeed there appears to be little varia-
tion from star to star in a sample of 100 halo stars, over and above that expected
from the statistical errors in the abundance determinations. The problem with the
interpretation of such data, however, is in the fact that astrophysical processes
can both create and destroy lithium. Up to about half the primordial 7Li abun-
dance may have been destroyed in stellar processes, while it is estimated that
up to 30% of the observed abundance might have been produced by cosmic ray
collisions. The resulting best guess for the primordial abundance is

Li/H � 1.6× 10−10, (8.6.24)

but the uncertainty, dominated by unknown parameters of the model used to
process the primordial abundance, is at least 50% and is itself highly uncertain
(Walker et al . 1993; Olive and Schramm 1992; Steigman et al . 1993).

8.6.10 Observations versus theory

We have tried to be realistic about the uncertainties in both the observations and
the extrapolation of those observations back to the primordial abundances. Going
into the detailed models of galactic chemical evolution that are required to handle
D, 3He and 7Li opens up a rather large can of model-dependent worms, so we shall
simply sketch out the general consensus about what these results mean for η and
Ωb.
The estimates of the primordial values of the relative abundances of deuterium

(D), 3He, 4He and 7Li all appear to be in accord with nucleosynthesis predictions,
but only if the density parameter in baryonic material is

Ω0bh2 � 0.02 (8.6.25)

(e.g. Walker et al . 1991; Smith et al . 1993). This roughly corresponds to 3 � η10 �
4. A baryon density higher than this would produce too much 7Li, while a lower
value would produce too much deuterium and 3He. Copi et al . (1995a,b) suggest
a somewhat wider range of allowed systematic errors, leading to 2 � η10 � 6.5,
which translates into

0.005 < Ωbh2 < 0.026. (8.6.26)

The dependence of 4He is so weak that it can really only be used as a consistency
check on the scheme.
This strong constraint on Ωb is the main argument for the existence of non-

baryonic dark matter, which we discuss in more detail in the second half of this
book.
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8.7 Non-standard Nucleosynthesis

We have seen that standard nucleosynthesis seems to account reasonably well
for the observed light-element abundances and also places strong constraints on
the allowed range of the density parameter. To what extent do these results rule
out alternative models for nucleosynthesis, and what constraints can we place
on models which violate the conditions (1)–(8) of the previous section? We shall
make some comments on this question by describing some attempts that have
been made to vary the conditions pertaining to the standard model.
First, one could change the expansion rate τH at the start of nucleosynthesis.

A decrease of τH (i.e. a faster expansion rate) can be obtained if the Universe
contains other types of particles in equilibrium at the epoch under considera-
tion. These could include new types of neutrino, or supersymmetric particles
like photinos and gravitinos: in general, τH � t ∝ (g∗T 4)−1/2. A small reduc-
tion of τH reduces the time available for the neutrons to decay into protons, so
that the value of Xn tends to move towards its primordial value of Xn � 0.5;
the reduction of τH does not, however, influence the time of onset of nucle-
osynthesis to any great extent so that this still occurs at T � 109 K. The net
result is an increase in the amount of helium produced. As we have mentioned
above, these results have for a long time led cosmologists to rule out the pos-
sibility than Nν might be larger than 4 or 5. Now we know that Nν = 3 from
particle experiments; nucleosynthesis still rules out the existence of any other
relativistic particle species at the appropriate epoch. A large reduction in τH,
however, tends to reduce the abundance of helium: the reactions (8.6.12) have
too little time to produce significant helium because the density of the Universe
falls rapidly. A decrease in the expansion rate allows a larger number of neu-
trons to decay into protons so that the ratio Xn(T∗) becomes smaller. Since
basically all the neutrons end up in helium, the production of this element is
decreased.
Another modification one can consider concerns the hypothesis that the neu-

trinos are not degenerate. If the chemical potential of νe is such that

40 >
∣∣∣∣ µνekBT

∣∣∣∣= |xνe| � 1 (8.7.1)

(the upper limit was derived in Section 8.2), the obvious relation

µp − µn = µνe − µe− � µνe = xνekBT (8.7.2)

(because at T � 1010 K we have µe+ � µe− � 0 through the requirement of electri-
cal neutrality) leads one to the conclusion that

Xn(T) �
[
1+ exp

(
xνe +

Q
kBT

)]−1
, (8.7.3)

for T � Tdν � 1010 K. For xνe � 0 (degeneracy of the νe), the value of Xn(Tdν) is
much less than 0.5, so that onemakes hardly any helium. Ifxνe  0 (degeneracy of
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ν̄e), the high number of neutrons, because Xn(Tdν) < 1, and the consequent low
number of protons prevents the formation of deuterium and therefore helium.
Deuterium would be formed much later when the expansion of the Universe had
diluted the ν̄e and some neutrons could have decayed into protons. But at this
point the density would be too low to permit significant nucleosynthesis, unless
Ω � 1. In the case when xνe � −1, one can have Xn � 0.5 at the moment of
nucleosynthesis, so that all the neutrons end up in helium. This would mean that
essentially all the baryonic matter in the Universe would be in the form of helium.
In the case where the neutrinos or antineutrinos are degenerate there is another
complication in the theory of nucleosynthesis: the total density of neutrinos and
antineutrinos would be greater than one would think if there were such a degen-
eracy. For example, if |xνe|  1, we have

ρ(νe)+ ρ(ν̄e) � σT
4
ν

c2

(
7
8
+ 15
4π2

x2νe +
15
8π4

x4νe

)
. (8.7.4)

This fact gives rise to a decrease in the characteristic time for the expansion
τH, with the corresponding consequences for nucleosynthesis. One can there-
fore conclude that the problems connected with a significant neutrino degeneracy
are large, and one might be tempted to reject them on the grounds that models
invoking such a degeneracy are also much more complicated than the standard
model.
Even graver difficulties face the idea of nucleosynthesis in a cold universe, i.e. a

model in which the background radiation is not all of cosmological origin and in
models where the universal expansion is not isotropic.
We should also mention that it has been suggested, and still is suggested by (the

few remaining) advocates of the steady-state theory, that a radically alternative
but possibly attractive model of nucleosynthesis might be one in which the light
elements were formed in an initial highly luminous phase of galaxy formation
or, perhaps, in primordial ‘stars’ of very high mass, the so-called Population III
objects. The constraints on these models from observations of the infrared back-
ground are, however, severe.
Probably the best argument for non-standard nucleosynthesis is the sugges-

tion that the standard model itself may be flawed. If the quark–hadron phase
transition is a first-order transition, then, as the Universe cools, one would pro-
duce bubbles of the hadron phase inside the quark plasma. The transition pro-
ceeds only after the nucleation of these bubbles, and results in a very inhomo-
geneous distribution of hadrons with an almost uniform radiation background.
In this situation, both protons and neutrons are strongly coupled to the radi-
ation because of the efficiency of ‘charged-current’ interactions. These reac-
tions, however, freeze out at T � 1 MeV so that the neutrons can then dif-
fuse while the protons remain locked to the radiation field. The result of all
this is that the n/p ratio, which is one of the fundamental determinants of
the 4He abundance, could vary substantially from place to place. In regions of
relatively high proton density, every neutron will end up in a 4He nucleus. In
neutron-rich regions, however, the neutrons have to undergo β-decay before
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they can begin to fuse. The net result is less 4He and more D than in the stan-
dard model, for the same value of η. The observed limits on cosmological abun-
dances do not therefore imply such a strong upper limit on Ωb. It has even
been suggested that such a mechanism may allow a critical density of baryons,
Ωb = 1, to be compatible with observed elemental abundances. This idea is cer-
tainly interesting, but to find out whether it is correct one needs to perform a
detailed numerical solution of the neutron transport and nucleosynthesis reac-
tions, allowing for a strong spatial variation. In recent years, attempts have been
made to perform such calculations but they have not been able to show con-
vincingly that the standard model needs to be modified and the limits (8.6.25)
weakened.
In conclusion we would like to suggest that, even if the standard model of

nucleosynthesis is in accord with observations (which is quite remarkable, given
the simplicity of the model), the constraints particularly on Ωb emerging from
these calculations are so fundamental to so many things that one should always
keep an open mind about alternative, non-standard models which, as far as we
are aware, are not completely excluded by observations.

Bibliographic Notes on Chapter 8

Bernstein (1988) is a detailed monograph on relativistic statistical mechanics,
which is also well covered by Kolb and Turner (1990). The physics of the quark–
hadron transition is discussed by Applegate and Hogan (1985) and Bonometto
and Pantano (1993).
For more extensive discussions of both theoretical and observational aspects

of cosmological nucleosynthesis, see the technical review articles of Schramm
and Wagoner (1979), Merchant Boesgaard and Steigman (1985), Bernstein et al .
(1988), Walker et al . (1991) and Smith et al . (1993) and the book by Börner (1988).
An important paper in the historical development of this field is Hoyle and Tayler
(1964).

Problems

1. Cross-sections for weak interactions at an energy E increase with E as E2. Show that
the rate of weak interactions in the early Universe depends on the temperature T
as σwk ∝ T 5. Using an appropriate model, estimate the temperature at which weak
interactions freeze out in the Big Bang.

2. Let t1 be the epoch when electron–positron annihilation is completed and t2 be
the epoch when helium fusion begins. You may assume that these two events take
place at temperatures of 5 × 109 and 109 K, respectively. Assuming a simplified
model in which Λ = k = 0 and which is radiation dominated before teq = 3 ×
105 years and matter dominated from teq until the present time (which you can take
to be 1010 years), use the present temperature of the cosmicmicrowave background,
2.7 K, to infer values of t1 and t2.
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3. If the abundance of neutrons, Xn, declines by beta decay in the interval between t1
and t2 (given in Question 2) according to

Xn = 0.16exp
(
− ∆t
1013 s

)
,

derive an estimate of Xn at the time helium fusion begins.
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The Plasma Era

9.1 The Radiative Era

The radiative era begins at the moment of the annihilation of electron–positron
pairs (e+–e−). This occurs, as we have explained, at a temperature Te � 5× 109 K,
corresponding to a time te � 10 s. After this event, the contents of the Universe
are photons and neutrinos (which have already decoupled from the background
and which in this chapter we shall assume to be massless) and matter (which we
take to be essentially protons, electrons and helium nuclei after nucleosynthesis;
the possible existence of non-baryonic dark matter is not relevant to the follow-
ing considerations and we shall therefore use Ω0 to mean Ω0b throughout this
chapter).
The density of photons and neutrinos (the relativistic particles) is

ργ,ν = ρ0r
(
T
T0r

)4
+ρ0ν

(
Tν
T0ν

)4
� ρ0r(1+0.227Nν)

(
T
T0r

)4
= ρ0rK0(1+z)4 (9.1.1)

(as we have explained, K0 � 1.68 if Nν = 3). The density of matter is

ρm = ρ0cΩ0m(1+ z)3 � ρ0cΩ0(1+ z)3. (9.1.2)

The end of the radiative era occurs when the density of matter coincides with that
of the relativistic particles, corresponding to a redshift

1+ zeq = ρ0cΩ0

K0ρ0r
� 4.3
K0

× 104Ω0h2 (9.1.3)

and a temperature

Teq = T0r(1+ zeq) � 105Ω0h2

K0
K. (9.1.4)
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At high temperatures both the hydrogen and helium are fully ionised, and exist in
the form of ions (H+, He++). Gradually, as the temperature cools, the number of
He+ ions and neutral H andHe atoms grows according to the equilibrium reactions

H+ + e− � H+ γ, He++ + e− � He+ + γ, He+ + e− � He+ γ, (9.1.5)

in which the density of the individual components is governed by the Saha equa-
tion which we saw in a different context in Section 8.6. We shall study in Section 9.3
in particular the equilibrium with regard to hydrogen recombination. It has been
calculated that at T � 104 K the helium content is 50% in the form He++ and 50%
He+, while the hydrogen is 100% H+; at T � 7× 103 K one has 50% He+ and 50%
He but still 100% H+; at T � 4 × 103, corresponding to z � 1500, one has 100%
He, 50% H+ and 50% H. One usually takes the epoch of recombination to be that
corresponding to a temperature of around Trec � 4000 K when 50% of the mat-
ter is in the form of neutral atoms to a good approximation. Usually, in fact, one
ignores the existence of helium during the period in which T > Trec; this period
is usually called the plasma epoch.

9.2 The Plasma Epoch

The plasma we consider is composed of protons, electrons and photons at a tem-
perature T > Trec. In this situation the plasma is an example of a ‘good plasma’,
in the sense that the energy contributed by Coulomb interactions between the
particles is much less than their thermal energy. This criterion is expressed by
the inequality

λD � λ, (9.2.1)

where λD is the Debye radius

λD =
(
kBT

4πnee2

)1/2
, (9.2.2)

in which ne is the number-density of ions from which one can obtain the mean
separation

λ � n−1/3
e �

( mp

ρ0cΩ0

)1/3(T0r
T

)
. (9.2.3)

In these equations, and throughout this section, e is expressed in electrostatic
units. In the cosmological case we find that

λD
λ

� 102(Ω0h2)−1/6. (9.2.4)

An equivalent way to express (9.2.1) is to assert that the number of ions ND inside
a sphere of radius λD is large (‘screening’ effects are negligible). One can show that

ND = 4
3πneλ

3
D � 1.8× 106(Ω0h2)−1/2. (9.2.5)
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The Coulomb interaction between an electron and a proton is felt only while the
electron traverses the Debye sphere of radius λD around an ion. The typical time
taken to cross the Debye sphere is

τe =ω−1
e =

(
me

4πnee2

)1/2
� 2.2× 108T−3/2 s, (9.2.6)

whereωe is the plasma frequency. The time τe can be compared with the charac-
teristic time for an electron to lose its momentum by electron–photon scattering

τ′eγ =
3me

4σTρrc
= 4.4× 1021T−4 s; (9.2.7)

the result is that τe  τ′eγ for z  2 × 107(Ω0h2)1/5, which is true for virtually
the entire period in which we are interested here. The fact that τe  τ′eγ means
that collective plasma effects are insignificant in this case, i.e. there is a very small
probability of an electron–photon collision during the time of an electron–proton
collision. On the other hand, for z� 2×107(Ω0h2)1/5 electrons and photons are
effectively ‘glued’ together (τ′eγ � τe in this period). One must therefore assign

the electron an ‘effective mass’ m∗
e = me + (ρr + pr/c2)/ne � 4

3ρr/ne � me

when describing an electron–proton collision. Returning to the case where z 
2× 107(Ω0h2)1/5, the electrons and protons are strongly coupled and effectively
stuck together; the characteristic time for electron–photon scattering is

τeγ = 3
4

me +mp

σTρrc
� 3
4

mp

σTρrc
� 9× 1024T−4 s, (9.2.8)

which we refer to in Section 12.8. One should mention here that the factor 3
4 in

Equations (9.2.7) and (9.2.8) comes from the fact that, as well as the inertia ρrc2 of
the radiation, one must also include the pressure pr = ρrc2/3. Another timescale
of interest is the timescale for photon–electron scattering; this is of order

τγe = 1
neσTc

= mp

ρmσTc
= 4

3τeγ
ρr
ρm

� 1020(Ω0h2)−1T−3 s. (9.2.9)

The relaxation time for thermal equilibrium between the protons and electrons
to be reached is

τep � 106(Ω0h2)−1T−3/2 s, (9.2.10)

which is much smaller than the characteristic time for the expansion of the Uni-
verse during this period. One can therefore assume that protons and electrons
have the same temperature. In the cosmological plasma, Compton scattering is
the dominant form of interaction. In the absence of sources of heat, this scat-
tering maintains the plasma in thermal equilibrium with the radiation. This is
the basic reason why we expect to see a thermal black-body radiation spectrum.
As we shall discuss in Section 9.5, energy injected into the plasma at a redshift
z > zt � 107–108 will be completely thermalised on a very short timescale. One
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cannot therefore obtain information about energy sources at z > zt from the
observed spectrum of the radiation. On the other hand, energy injected after zt
may not be thermalised, and one might expect to see some signal of this injection
in the spectrum of relic radiation.

9.3 Hydrogen Recombination

During the final stages of the plasma epoch, the particles p, e−, H and γ (ignoring
the helium for simplicity) are coupled together via the reactions (9.1.5). Supposing
that these reactions hold the particles in thermal equilibrium, we can study the
process of hydrogen recombination, which marks the end of the plasma era and
the beginning of the era of neutral matter. Let us concentrate on the ionisation
fraction

x = ne
np +nH � ne

ntot
. (9.3.1)

Neutral hydrogen has a binding energy BH � 13.6 eV (corresponding to a tem-
perature TH � 1.6 × 105 K). At a temperatures of the order of T � 104 K all the
particles involved are non-relativistic, and one can therefore apply simple Boltz-
mann statistics to the plasma. We therefore obtain the number-density of the ith
particle species in the form

ni � gi
(
mikBT
2π�2

)3/2
exp

(
µi −mic2

kBT

)
(9.3.2)

(cf. Section 8.6). The relevant chemical potentials are related by

µp + µe− = µH : (9.3.3)

the photons are in equilibrium and therefore have zero chemical potential. The
statistical weights of the particles we are considering are gp = ge− = 1

2gH = 2. The
masses of the proton, the electron and the neutral hydrogen atoms are related by

mHc2 = (mp +me)c2 − BH. (9.3.4)

From the preceding equations, noting that global charge neutrality requires ne =
np, we obtain the relation

nenp
nHntot

= n2e
(ntot −ne)ntot =

x2

1− x = 1
ntot

(
mekBT
2π�2

)3/2
exp

(
− BH
kBT

)
, (9.3.5)

which is called the Saha formula corresponding to the hydrogen recombination
reaction. In Table 9.1 we give some examples of the behaviour of the hydrogen
ionisation fraction x as a function of redshift z and temperature T = T0r(1 + z)
for various values of the density parameter in the formΩ0h2. As one can see from
Table 9.1, the process of hydrogen recombination does not begin at TH because
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Table 9.1 Ionisation fractions as function of z (or T ) and Ω0h2.

z 2000 1800 1600 1400 1200 1000
T (K) 5400 4860 3780 3240 2970 2700

Ω0h2

10 0.995 0.914 0.358 0.004 0.001 1× 10−5

1 0.999 0.990 0.732 0.108 0.004 4× 10−5

0.1 1.0 1.0 0.954 0.303 0.012 1× 10−4

0.01 1.0 1.0 0.995 0.664 0.039 3× 10−4

of the relatively large numerical factor appearing in front of the exponential in
Equation (9.3.5). The redshift at which the ionisation fraction falls to 0.5 does
not vary much with the parameter Ω0h2 and is always contained in the interval
1400–1600. It is a good approximation therefore to assume a redshift zrec � 1500
as characteristic of the recombination epoch.
The Saha formula is valid as long as thermal equilibrium holds. In an approx-

imate way, one can say that this condition is true as long as the characteristic
timescale for recombination τrec � x/ẋ is much smaller than the timescale for the
expansion of the Universe, τH. This latter condition is true for z > 2000(Ω0h2)−1,
only when the ionisation fraction is still of order unity. It is possible therefore
that physical processes acting out of thermal equilibrium could have signifi-
cantlymodified the cosmological ionisation history. For this reason, many authors
have investigated non-equilibrium thermodynamical processes during the plasma
epoch. These studies are much more complex than the quasi-equilibrium treat-
ment we have described here, and to make any progress requires certain approx-
imations. There is nevertheless a consensus that the value of x during recombi-
nation (z � 1000) is probably a factor of order 100 greater than that predicted
by the Saha Equation (9.3.5). In fact, in the interval 900 < z < 1500, the following
approximate expression for x(z), due to Sunyaev and Zel’dovich, holds:

x(z) � 5.9× 106(Ω0h2)−1/2(1+ z)−1 exp
(
− BH
kBT0rz

)
. (9.3.6)

All calculations predict that the ionisation fraction tends to a value in the range
10−4–10−5 for z → 0. As we shall see in Chapter 19, the ionisation fraction of
intergalactic matter at t = t0 is actually much higher than this, probably due to
the injection of energy by early structure formation after zrec.

9.4 The Matter Era

The matter era begins at zeq. As we have already explained, assuming a value of
zrec � 1500, one concludes that zeq > zrec for Ω0h2 � 0.04. During the matter
era the relations (9.1.1) and (9.1.2) are still valid for the radiation and matter den-
sities, respectively, and the radiation temperature is given by Tr = T0r(1+ z). As



196 The Plasma Era

far as the matter temperature is concerned, this remains approximately equal
to the radiation temperature until z � 300, thanks to the residual ionisation
which allows an exchange of energy between matter and radiation via Compton
diffusion. The characteristic timescale differs by a factor 1/x from that given
by Equation (9.2.9) due to the partial ionisation. The timescale τeγ can be com-
pared with the characteristic time for the expansion of the Universe which, for
zeq � z� Ω−1

0 , is given by

τH = 3
2t0c(Ω0h2)−1/2(1+ z)−3/2 � 3.15× 1017(Ω0h2)−1/2(1+ z)−3/2 s (9.4.1)

(cf. Equation (5.6.11)). One finds that τH < τeγ for z < 102(Ω0h2)5. After this red-
shift the thermal interaction between matter and radiation becomes insignificant,
so that the matter component cools adiabatically with a law Tm ∝ (1 + z)2. The
epoch zd � 300 is the order of magnitude of the epoch of decoupling.
After decoupling, any primordial fluctuations in the matter component that

survive the radiative era can grow and eventually give rise to cosmic structures:
stars, galaxies and clusters of galaxies. The part of the gas that does not end
up in such structures may be reheated and partly reionised by star and galaxy
formation. This partial reionisation is called reheating, but should not be confused
with the process of reheating which happens at the end of inflation.
An important consideration in the post-recombination epoch is the issue of the

optical depth τ of the Universe due to Compton scattering. This is a dimensionless
quantity such that exp(−τ) (often called the visibility ) describes the attenuation
of the photon flux as it traverses a certain length. The probability dP that a photon
has suffered a scattering event from an electron while travelling a distance c dt
is given by

dP = −dNγ
Nγ

= −dI
I

= dt
τγe

= neσTc dt = −xρm
mp

σTc
dt
dz

dz = −dτ, (9.4.2)

where Nγ is the photon flux, so that

I(t0, z) = I(t) exp
(
−
∫ z
0

xρm
mp

σTc
dt
dz

dz
)
= I(t) exp[−τ(z)]; (9.4.3)

I(t0, z) is the intensity of the background radiation reaching the observer at time
t0 with a redshift z if it is incident on a region at a redshift z with intensity I[t(z)];
τ(z) is called the optical depth of such a region. The probability that a photon,
which arrives at the observer at the present epoch, suffered its last scattering
event between z and z − dz is

− d
dz

{1− exp[−τ(z)]}dz = exp[−τ(z)]dτ = g(z)dz. (9.4.4)

The quantityg(z) is called the differential visibility or effective width of the surface
of last scattering; with a behaviour of the ionisation fraction given by (9.3.6) for
z > 900 and a residual value x(z) � 10−4–10−5 for z < 900, one finds that g(z)
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is well approximated by a Gaussian with peak at zls � 1100 and width ∆z �
400, which corresponds to a (comoving) length scale of around 40h−1 Mpc or
to an angular scale subtended on the last scattering surface of 10Ω1/2

0 arcmin.
(Incidentally, at zrec the horizon is of order 200h−1 Mpc, which corresponds to an
angular scale of around 2◦.) The value of zls is not very sensitive to variations in
Ω0h2. The integral of g(z) over the range 0 � z � ∞ is clearly unity. At redshift
zls we also have τ(z) � 1. One usually takes the ‘surface’ of last scattering to
be defined by the distance from the observer from which photons arrive with a
redshift zls, due to the expansion of the Universe.
If there is a reionisation of the intergalactic gas, in themanner we have described

above, at zreh < zrec, we can put x = 1 in the interval 0 � z � zreh and obtain,
from Equations (2.4.16) and (9.4.2),

τ(z) = ρ0cΩ0σTc
mpH0

∫ z
0

(1+ z)
(1+Ω0z)1/2

dz. (9.4.5)

If Ω0z� 1, we get the approximate result

τ(z) � 10−2(Ω0h2)1/2z3/2; (9.4.6)

in this case τ(z) is unity at zls � 20(Ω0h2)1/3, which is reasonably exact for
acceptable values of Ω0h2. In conclusion, we can see that, if zreh > 20(Ω0h2)1/3,
then the redshift of last scattering is given by zls � 20(Ω0h2)−1/3; if, however,
zreh < 2, the redshift of last scattering is of order 103 and we have a ‘standard’
ionisation history. In either case the study of the isotropy of the radiation back-
ground can give information on the state of the Universe only as far as regions at
distances corresponding to zls.

9.5 Evolution of the CMB Spectrum

Assuming that radiation is held in thermal equilibrium at some temperature Ti,
the intensity of the radiation (defined as power received per unit frequency per
unit area per steradian) is given by a black-body spectrum:

I(ti, ν) = 4π�ν3

c

[
exp

(
hν
kBTi

)
− 1

]−1
. (9.5.1)

One can easily show that in the course of an adiabatic expansion of the Universe,
after all processes creating or absorbing photons have become insignificant, the
form of the spectrum I(t, ν) remains the same with the replacement of Ti by

T = Tia(ti)a(t)
. (9.5.2)

This can be understood because the number of photons per unit frequency in
volume V ∝ a(t)3 is given by

Nν =
[
exp

(
hν
kBT

)
− 1

]−1
; (9.5.3)
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the expansion creates a variation of ν ∝ a(t)−1 and, because Nν must be con-
served, T must also vary as a(t)−1. In fact, one can use a similar argument to
show that a thermal Maxwell–Boltzmann distribution of particle velocities also
remains constant during the expansion of the Universe but the effective temper-
ature varies as T ∝ a(t)−2.
The FIRAS instrument on the COBE satellite (Mather et al . 1994) obtained the

results shown in Figure 9.1, together with results in different wavelength regions
from other experiments. The fit to the black-body spectrum is extremely good,
providing clear evidence that this radiation is indeed relic thermal radiation from
a primordial fireball.
In fact, the quality of the fit of the observed CMB spectrum to a black-body curve

does more than confirm the Big Bang picture. It places important constraints on
processes which might be expected to occur within the Big Bang model itself and
which would lead to slight distortions in the black-body shape. For example, even
in the idealised equilibriummodel of hydrogen recombination, the physical nature
of this process is expected to produce distortions of the spectrum. Recombination
occurs when Tr � 4000 K. Although the number-density of photons is some 109

times greater than the number-density of baryons at this time, the density of
photons with hν > 13.6 eV is less than the number-density of baryons. Since the
optical depth for absorption of Lyman series photons is very high, recombination
occurs mainly through two-photon decay, which is relatively slow. (This is one of
the reasons why the ionisation fraction is somewhat higher than the Saha equation
predicts.) Although each recombination therefore produces several photons, since
the number-density of baryons is so much smaller than that of the photons, these
recombination photons cannot change the spectral shape verymuch near its peak.
They can, however, lead to strong distortions in the far Wien (hν � kBT) and far
Rayleigh–Jeans (hν  kBT) parts of the spectrum. Unfortunately, the spectrum is
quite weak in this region and galactic dust makes it difficult to make observations
to test these ideas.
A more significant distortion mechanism is associated with the injection of

some form of energy into the plasma at some time. As we have explained, the
relaxation time for non-thermal energy injection to be thermalised is usually very
short. Nevertheless, certain types of energy release cannot be thermalised and
could therefore lead to observable distortions.
After energy injection, the first thing that happens is that the electrons adjust

their temperature to whatever the non-equilibrium spectrum is. This happens on a
timescale determined by the number-density of electrons, which is much smaller
than the number-density of photons. Next, the radiation spectrum is adjusted by
multiple scattering processes which conserve the total number of photons. As a
result, the total number of photons does not match the effective temperature of
the spectrum; one finds instead a form

I(ti, ν) = 4π�ν3

c

[
exp

(
hν
kBTi

+ µ
)
− 1

]−1
, (9.5.4)
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Figure 9.1 The spectrum of the cosmicmicrowave background asmeasured by the FIRAS
instrument on the COBE satellite along with other experimental results. The best-fitting
black-body spectrum has T = 2.726±0.010 K (95% confidence). Picture courtesy of George
Smoot.

with a chemical potential µ � 0; for convenience we shall take µ to be measured in
units of kBT throughout the rest of this section. For µ 1 the difference between
the spectrum (9.5.4) and the pure black-body (9.5.1) is largest for hν  µkBT ,
i.e. in the Rayleigh–Jeans part of the spectrum. The final step in this process is the
establishment of a full thermodynamical equilibrium at some new temperature
T ′ compared with the original T ; no trace of the injected energy remains at this
stage.
Clearly, only the middle stage of this process which produces the µ-distorted

spectrum (9.5.4) yields important information in this case. Accurate calcula-
tions of the relevant timescales show that energy injected at z > 104 (the limit
is approximate) cannot be fully thermalised and would therefore be expected
to produce a spectrum of the form (9.5.4). On the other hand, for energy
injected at z > 107 the double Compton effect (radiation of an additional soft
photon during Compton scattering) becomes important and this thermalises
things very quickly. Observational constraints on µ therefore place an upper
limit on any energy injection in the redshift window 107 > z > 104; the cur-
rent upper limit from COBE is µ < 3.3 × 10−4. Possible sources of energy
release in this window might be primordial back hole evaporation, decay of
unstable particles, turbulence, superconducting cosmic strings or, less exotically,
the damping of density fluctuations by photon diffusion, as described in Sec-
tion 12.7.



200 The Plasma Era

Physical processes operating at z < zrec can also distort the CMB spectrum, but
here the distortion takes a slightly different form. If there exists a period of reioni-
sation of the Universe, as indeed seems to be the case (see Section 19.3), Compton
scattering of CMB photons by ionised material can distort the shape of the spec-
trum in a way that depends upon when the secondary heating occurred and how
it affected the intergalactic gas. In many circumstances only one parameter is
needed to describe the distortion, because the electron temperature Te is greater
than the radiation temperature Tr. The relevant parameter is the y-parameter

y =
∫ tmax

tmin

k(Te − Tr)
mec2

σTne(z)c dt, (9.5.5)

where the integral is taken over the time the photon takes to traverse the
ionised medium. This is usually called the Sunyaev–Zel’dovich effect (Sunyaev
and Zel’dovich 1970).
When CMB photons scatter through material which has been heated in this way

the shape of the spectrum is distorted in both Rayleigh–Jeans and Wien regions. If
y < 0.25 the shape of the Rayleigh–Jeans part of the spectrum does not change,
but the effective temperature changes according to T = Tr exp(−2y). At high
frequencies the intensity actually increases. This can be understood in terms of
low-frequency CMB photons being boosted in energy by Compton scattering and
transferred to high-frequency parts of the spectrum. Strong constraints on the
allowed y-distortions are also placed by the COBE satellite: y � 3 × 10−5. In
Chapter 19 we explain how these observations can constrain theories of structure
formation.

Bibliographic Notes on Chapter 9

A classic reference for the behaviour of the ionisation of the expanding Universe
is Wyse and Jones (1985); Kaiser and Silk (1987) also contains an accessible dis-
cussion of optical depths and reionisation. Much of the other material is covered
by standard texts; see in particular Peebles (1971, 1993).

Problems

1. Use the Saha formula (9.3.5) to compute the ionisation fraction of a pure hydrogen
plasma at T = 3000 K if Ω0bh2 = 0.01.

2. Derive Equation (9.4.5), i.e. show that

τ(z) = ρ0cΩ0σTc
mpH0

∫ z
0

(1+ z)
(1+Ω0z)1/2

dz.

3. Using Equation (9.4.5), show that

τ(z) � A h
Ω0
[(1+Ω0z)1/2(3Ω0 +Ω0z − 2)− (3Ω0 − 2)],
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and derive an expression for the constant A in terms of physical constants and
cosmological parameters.

4. Low-energy photons from the cosmic microwave background pass through a cloud
of hot plasma (at a temperature of order 108 K) before arriving at the observer. Show
that the observer sees a fractional reduction in the temperature T of the microwave
background in the direction of the cloud given by

∆T
T

� −2
∫
σTPe
mec

dt.
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Introduction to
Jeans Theory

10.1 Gravitational Instability

In an attempt to understand the formation of stars and planets, Jeans (1902)
demonstrated the existence of an important instability in evolving clouds of gas.
This instability, now known as the gravitational Jeans instability , gravitational
instability, or simply Jeans instability, is now the cornerstone of the standard
model for the origin of galaxies and large-scale structure.
Jeans demonstrated that, starting from a homogeneous and isotropic ‘mean’

fluid, small fluctuations in the density, δρ, and velocity, δv , could evolve with
time. His calculations were done in the context of a static background fluid; the
expansion of the Universe was not known at the time he was working and, in
any case, is not relevant for the formation of stars and planets. In particular, he
showed that density fluctuations can grow in time if the stabilising effect of pres-
sure is much smaller than the tendency of the self-gravity of a density fluctuation
to induce collapse. It is not surprising that such an effect should exist: gravity is an
attractive force so, as long as pressure forces are negligible, an overdense region
is expected to accrete material from its surroundings, thus becoming even more
dense. The denser it becomes the more it will accrete, resulting in an instability
which can ultimately cause the collapse of a fluctuation to a gravitationally bound
object. The simple criterion needed to decide whether a fluctuation will grow with
time is that the typical lengthscale of a fluctuation should be greater than the
Jeans length, λJ, for the fluid. Before we calculate the Jeans length in mathemati-
cal detail, we first give a simple order-of-magnitude argument to demonstrate its
physical significance.
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Imagine that, at a given instant, there is a spherical inhomogeneity of radius
λ containing a small positive density fluctuation δρ > 0 of mass M , sitting in a
background fluid of mean density ρ. The fluctuation will grow (in the sense that
δρ/ρ will increase) if the self-gravitational force per unit mass, Fg, exceeds the
opposing force per unit mass arising from pressure, Fp:

Fg � GMλ2 � Gρλ
3

λ2
> Fp � pλ

2

ρλ3
� v

2
s

λ
, (10.1.1)

where vs is the sound speed; this relation implies that growth occurs if λ >
vs(Gρ)−1/2. This establishes the existence of the Jeans length λJ � vs(Gρ)−1/2.
Essentially the same result can be obtained by requiring that the gravitational
self-energy per unit mass of the sphere, U , be greater than the kinetic energy of
the thermal motion of the gas, again per unit mass, ET,

U � Gρλ
3

λ
> ET � v2s , (10.1.2)

or by requiring the gravitational free-fall time, τff, to be less than the hydro-
dynamical time, τh,

τff � 1
(Gρ)1/2

< τh � λ
vs
. (10.1.3)

When the conditions (10.1.2), (10.1.3) are not satisfied, the pressure forces inside
the perturbation are greater than the self-gravity, and the perturbation then prop-
agates like an acoustic wave with wavelength λ at velocity vs.
In fact, as we shall see in Section 10.3, similar reasoning also turns out to hold

for a collisionless fluid, as long as we replace vs, the adiabatic sound speed, with
v∗, which is of order the mean square velocity of the collisionless particles mak-
ing up the fluid. In this case, for λ > λJ, the self-gravity overcomes the tendency
of particles to stream at the velocity v∗, whereas if λ < λJ the velocity disper-
sion of the particles is too large for them to be held by the self-gravity, and
they undergo free streaming; in this case the fluid fluctuations do not behave
like acoustic waves, but are smeared out and dissipated by this process. Before
looking at collisionless fluids, however, let us investigate the collisional case more
quantitatively.

10.2 Jeans Theory for Collisional Fluids

To investigate the Jeans instability and to find the Jeans length λJ more accurately
we need to look at the dynamics of a self-gravitating fluid. We shall begin by look-
ing at the case Jeans himself studied, i.e. a collisional gas in a static background.
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The equations of motion of such a fluid, in the Newtonian approximation, are

∂ρ
∂t

+∇ · ρv = 0, (10.2.1a)

∂v
∂t

+ (v · ∇)v + 1
ρ
∇p +∇ϕ = 0, (10.2.1b)

∇2ϕ − 4πGρ = 0. (10.2.1 c)

These are the continuity equation, the Euler equation and the Poisson equation,
respectively. Throughout this chapter and the next we shall neglect any dissipative
terms arising from viscosity or thermal conductivity. For this reason we must add
another equation to the ones above, describing the conservation of entropy per
unit mass s:

∂s
∂t

+ v · ∇s = 0. (10.2.1d)

The system of Equations (10.2.1) admits the static solution with ρ = ρ0, v = 0,
s = s0, p = p0 and ∇ϕ = 0. Unfortunately, however, according to the system of
Equations (10.2.1), if ρ0 ≠ 0, then the gravitational potentialϕmust vary spatially;
in other words, a homogeneous distribution of ρ cannot be stationary, and must
be globally either expanding or contracting. There is therefore nothing necessarily
relativistic about the expansion of the Universe: the incompatibility of a static
universe with the Cosmological Principle is also apparent in Newtonian gravity.
This same effect is also the reason why the Einstein static universe is unstable.
As we shall see, however, when we consider the case of an expanding universe,
the results of Jeans remain qualitatively unchanged. We shall therefore proceed
with Jeans’ treatment, even though it does have this problem. It turns out to be an
incorrect theory, which nevertheless can be ‘reinterpreted’ to give correct results.
Its great advantage is that Newtonian gravity is more familiar to most students
than general relativity.
Now let us look for a solution to (10.2.1) that represents a small perturbation

of the (erroneous) static solution: ρ = ρ0 + δρ, v = δv, p = p0 + δp, s = s0 + δs,
ϕ = ϕ0 + δϕ. Introducing these small quantities into the Equations (10.2.1) and
neglecting terms of higher order in small quantities, we find

∂δρ
∂t

+ ρ0∇ · δv = 0, (10.2.2a)

∂δv
∂t

+ 1
ρ0

(
∂p
∂ρ

)
s
∇δρ + 1

ρ0

(
∂p
∂s

)
ρ
∇δs +∇δϕ = 0, (10.2.2b)

∇2δϕ − 4πGδρ = 0, (10.2.2 c)

∂δs
∂t

= 0. (10.2.2d)

We now have to study all the solutions to this perturbed system of equations.
Indeed, as we shall see, there are five solutions: two of adiabatic type, one of
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entropic type, and two vortical modes. To solve the Equations (10.2.2) we look for
solutions in the form of plane waves

δui = δi exp(ik · r), (10.2.3)

where, i = 1,2,3,4, and the perturbations δui stand for δρ, δv, δϕ and δs,
respectively; the δi are functions only of time. Given that the unperturbed solu-
tions do not depend upon position, one can search for solutions of the form

δi(t) = δ0i exp(iωt); (10.2.4)

let us refer to the amplitudes δ0i as D, V , Φ and Σ. In the previous equations
r is a position vector, k is a (real) wavevector, and ω is a frequency which is in
general complex. Substituting from (10.2.3) and (10.2.4) into (10.2.2) and putting
v2s = (∂p/∂ρ)S (vs is the sound speed, as we mentioned above), and δ0 = D/ρ0
we obtain

ωδ0 + k · V = 0, (10.2.5a)

ωV + kv2s δ0 +
k
ρ0

(
∂p
∂s

)
ρ
Σ + kΦ = 0, (10.2.5b)

k2Φ + 4πGρ0δ0 = 0, (10.2.5 c)

ωΣ = 0. (10.2.5d)

Let us briefly consider at the start those solutions withω = 0, i.e. those that do not
depend upon time. One such solution corresponds to Σ = Σ∗ ≠ 0 = const. In the
absence of viscosity and thermal conduction the perturbation to s is conserved
in time; this is called the entropic solution. Another two solutions withω = 0 are
obtained by putting Σ = 0 and k · V = 0: these therefore have k perpendicular
to V and represent vortical modes in which ∇× v ≠ 0, which does not imply any
perturbations to the density, as is evident from (10.2.5b) and (10.2.5 c).
The time-dependent solutions of (10.2.5), i.e. those with ω ≠ 0, are more inter-

esting. In this case (10.2.5d) implies that Σ = 0: the perturbations are adiabatic.
From (10.2.5a) one has that k·V ≠ 0. In this case, we can resolve into components
parallel and perpendicular to V . We mentioned above the consequence of having
k perpendicular to V , so now let us concentrate upon the parallel component. Per-
turbations with k and V parallel are longitudinal in character. Equations (10.2.5)
now become

ωδ0 + kV = 0, (10.2.6a)

ωV + kv2s δ0 + kΦ = 0, (10.2.6b)

k2Φ + 4πGρ0δ0 = 0. (10.2.6 c)

This system admits a non-zero solution for δ0, V and Φ if and only if its deter-
minant vanishes. This means that ω and k must satisfy the dispersion relation:

ω2 − v2s k2 + 4πGρ0 = 0. (10.2.7)
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The solutions are of two types, according to whether the wavelength λ = 2π/k is
greater than or less than

λJ = vs
(
π
Gρ0

)1/2
, (10.2.8)

which is called the Jeans length. Notice the same dependence upon G, ρ0 and vs
as the simple qualitative description given in Section 10.1.
In the case λ < λJ the angular frequency ω obtained from (10.2.7) is real:

ω = ±vsk
[
1−

(
λ
λJ

)2]1/2
. (10.2.9)

From Equations (10.2.3), (10.2.4) and (10.2.6) one obtains easily that

δρ
ρ0

= δ0 exp[i(k · r ± |ω|t)], (10.2.10a)

δv = ∓k
k
vsδ0

[
1−

(
λ
λJ

)2]1/2
exp[i(k · r ± |ω|t)], (10.2.10b)

δϕ = −δ0v2s
(
λ
λJ

)2
exp[i(k · r ± |ω|t)], (10.2.10 c)

which represent two sound waves in directions ±k, with a dispersion given by
(10.2.9). The phase velocity tends to zero for λ→ λJ.
When λ > λJ the frequency is imaginary:

ω = ±i(4πGρ0)1/2
[
1−

(λJ
λ

)2]1/2
. (10.2.11)

In this case we have

δρ
ρ0

= δ0 exp(ik · r) exp(±|ω|t), (10.2.12a)

δv = ∓ikδ0
k2
(4πGρ0)1/2

[
1−

(λJ
λ

)2]1/2
exp(ik · r ± |ω|t), (10.2.12b)

δϕ = −δ0v2s
(
λ
λJ

)2
exp(ik · r ± |ω|t), (10.2.12 c)

which represents a non-propagating solution (stationarywave) of either increasing
or decreasing amplitude. The characteristic timescale for the evolution of this
amplitude is

τ ≡ |ω|−1 = (4πGρ0)−1/2
[
1−

(λJ
λ

)2]−1/2
. (10.2.13)

It is only this type of solution that exhibits the phenomenon we referred to above
as the gravitational or Jeans instability. For scales λ� λJ the characteristic time
τ coincides with the free-fall collapse time, τff � (Gρ0)−1/2, but for λ → λJ this
characteristic timescale diverges.
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10.3 Jeans Instability in Collisionless Fluids

Let us now extend our analysis of the gravitational Jeans instability to a gas of
collisionless particles. In a sense, the absence of collisions implies there is no
pressure, so there would appear to be no analogy with the Jeans length in this
case. However, collisionless particles do have velocities and these velocities are
not necessarily represented as a single unique v at each position x as we assumed
in Section 10.2 for an idealised fluid. Instead there is a distribution of random
velocities at each point; in what follows we assume this distribution is isotropic.
It is possible for a collisionless system to be well described by a fluid with zero
pressure. That occurs when the fluid is extremely cold so that the resulting flow is
nearly laminar, i.e. so that the particles always travel in nearly parallel trajectories
that do not cross. In such a case it is a good approximation to suppose there is a
unique velocity at every point. We shall return to this when we discuss cold dark
matter. For simplicity we also assume all particles have the same massm.
In the collisionless case, the Equations (10.2.1a) and (10.2.1b) should be

replaced by the Liouville equation

∂f
∂t

+∇ · fv +∇v · f v̇ = 0, (10.3.1)

where ∇v ≡ (∂/∂v) by analogy with ∇ ≡ (∂/∂r). The function f(r,v; t) is the
phase-space distribution function for the particles; the phase space is six dimen-
sional, and f also depends explicitly on time. The function f therefore represents
the number-density of particles in a volume dr at position r and with velocity
in the volume dv at v; the actual number of particles in each of these volumes
is given by f(r,v; t)dr dv. In our case, of a homogeneous and isotropic time-
stationary background distribution, it can be shown that the distribution function
is only a function of v2.
We stress that the systems (10.2.1a)–(10.2.1 c) and Equation (10.3.1) are both

approximations to a full statistical mechanical treatment using a Boltzmann equa-
tion with a collisional term on the right-hand side of (10.3.1).
Equation (10.2.1 c) does not change in the collisionless situation, so we must

bear in mind the comments we made above about the existence of stationary
solutions. Nevertheless, let us consider Equation (10.2.2 c):

∇2δϕ − 4πGδρ = 0, (10.3.2)

where we now have

δρ =m
∫
δf dv; (10.3.3)

δf is the perturbation of the distribution function and δϕ is the perturbation of
the gravitational potential, related to the gravitational acceleration g = v̇ by

δg = −∇δϕ. (10.3.4)
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Taking account of this last expression, Equation (10.3.1) becomes

∂
∂t
δf + v · ∇δf −∇δϕ · ∇vf = 0. (10.3.5)

By analogy with what we have done in the previous paragraph, we look for a
solution to Equations (10.3.2) and (10.3.5) with δf , δϕ and δρ in the form of
a plane wave. Without loss of generality, we can take the wavevector k to be in
the x-direction. Applying the operator ∇ to (10.3.5) and using the fact that the
operators ∇ and ∇v commute, we obtain from (10.3.2) that

δf = 4πG
df
dv2

vx
k(ω− kvx)δρ. (10.3.6)

This equation, after substitution in Equation (10.3.3), becomes the dispersion rela-
tion

k− 4πGm
∫

vx
ω− kvx

df
dv2

dv = 0. (10.3.7)

To find the solution appropriate to k → 0 (long wavelengths) we can develop the
dispersion relation as a power series in kvx/ω; keeping only the first two terms
in such a series yields

ω2 � 4πGmω
k

∫
vx

df
dv2

dv − 4πGm
∫
v2x

df
dv2

dv. (10.3.8)

The first term vanishes for reasons of symmetry, but the second can be evaluated
by integration by parts (note that f(v2) tends to zero as v →∞): one has

ω2 � −4πGρ, (10.3.9)

where ρ is obtained from a relation analogous to (10.3.3). This result shows that
there is indeed a gravitational instability in this case, with characteristic timescale

τ � (4πGρ)−1/2, (10.3.10)

identical to the previous expression (10.2.13) for λ� λJ.
The Jeans length λJ can be obtained from (10.3.7) by puttingω = 0, by analogy

with what we have seen above; by similar reasoning to that which led to (10.3.10)
we find

λJ = v∗
(
π
Gρ

)1/2
, (10.3.11)

where

v−2∗ =
∫
v−2f d3v∫
f d3v

≡ 〈v−2〉. (10.3.12)
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The velocity v∗ replaces the velocity of sound vs in (10.2.8). In the particular case
of a Maxwellian distribution

f(v) = ρ
(2πσ 2)3/2

exp
(−v2
2σ 2

)
, (10.3.13)

we have v∗ = σ .
The analysis of the evolution of perturbations for λ < λJ is complicated and

we shall not go into it further in this chapter. In fact, in this case, there is a rapid
dissipation of fluctuations of wavelength λ in a time of order τ � λ/v∗ because
of the diffusion of particles, a phenomenon known as ‘free streaming’, similar to
the phenomenon known in collisionless plasma theory as ‘Landau damping’ or
‘phase mixing’.

10.4 History of Jeans Theory in Cosmology

In the subsequent chapters we shall discuss how gravitational instability might
take place in a cosmological context and how this theory furnishes a more-or-less
complete picture of cosmic structure formation. We shall find a number of com-
plications of the simple picture described by Jeans. For example, we shall have to
take explicit account of the expansion of the Universe. We may also need to take
into account how general relativity might alter the simple Newtonian analysis out-
lined above. We also need to understand how the relativistic and non-relativistic
components of the fluid influence the growth of fluctuations, and what is the
effect of dark matter in the form of weakly interacting particles. Before going on
to cover this new ground in amathematically complete way, it is instructive to give
a brief historical outline of the application of Jeans theory in cosmology. This is
an introductory survey only, and we shall give the arguments in greater technical
detail in Chapters 12 and 13.
The first to tackle the problem of gravitational instability within the framework

of general relativity was Lifshitz (1946). He studied the evolution of small fluctu-
ations in the density of a Friedmann model. Curiously, it was not later that the
evolution of perturbations in a Friedmann model with p ρc2 was investigated
in Newtonian theory by Bonnor (1957). In some ways the relativistic cosmological
theory is more simple that the Newtonian analogue, which requires considerable
mathematical subtlety.
These foundational studies were made at a time when the existence of the cos-

mic microwave background was not known. There was no generally accepted cos-
mological model within which to frame the problem of structure formation, and
there was no way to test the gravitational instability hypothesis for the origin of
structure. Nevertheless, it was clear at this time that if the Universe was evolving
with time (as the Hubble expansion indicated), then it was possible, in principle,
that structure may have evolved by some mechanism similar to the Jeans process.
The discovery of the microwave background in the 1960s at last gave theorists a
favoured model in which to study this problem: the hot Big Bang. The existence of
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the microwave background at the present time implied that there was a period in
which the Universe comprised a plasma of matter and radiation in thermal equi-
librium. Under these physical conditions, there are a number of processes, due
to viscosity and thermal conduction in the radiative plasma, which could influ-
ence the evolution of a perturbation with wavelength less than λJ. The pioneering
works by Silk (1967, 1968), as well as Doroshkevich et al . (1967), Peebles and Yu
(1970), Weinberg (1971), Chibisov (1972) and Field (1971), amongst many others,
represented the first attempts to derive a theory of galaxy and structure forma-
tion within the framework of modern cosmology. At this time there was in fact
a rival theory in which it was proposed that galaxies were formed as a result of
primordial cosmic turbulence, i.e. large-scale vortical motions rather than longi-
tudinal adiabatic perturbations. This theory, however, rapidly fell from fashion
when it was realised that it should lead to large fluctuations in the temperature
of the microwave background on the sky. In fact, this point about the microwave
background was then and is now important in all theories of galaxy formation. If
structure grows by gravitational instability, it is in principle possible to reconcile
the present highly inhomogeneous Universe with a past Universe which was much
smoother. The microwave background seemed to be at the same temperature in
all directions to within about one part in a thousand in this period, indicating a
comparable lack of inhomogeneity in the early Universe. If gravitational instabil-
ity were the correct explanation for the origin of structure, however, there should
be some fluctuations in the microwave background temperature. This initiated a
search, which has only recently been successful, for fluctuations in the cosmic
microwave background on the sky. But more of that later.

10.5 The Effect of Expansion: an
Approximate Analysis

The original Jeans theory of gravitational instability, formulated in a static Uni-
verse, cannot be applied to an expanding cosmological model. We also have to
contend with some features in the cosmological case which do not appear in the
original analysis. For example, what happens to the Jeans instability if the Uni-
verse is radiation dominated? In this chapter our goal is to translate the usual
language of gravitational instability into the context of the Friedmann models.
We can then go on, in the next two chapters, to examine the physics of expanding
universe models in more detail.
It is useful perhaps to outline the basic results we obtain later with an approx-

imate argument that explains the basic physics. We assume for the moment
that the Universe is dominated by pressureless material. The difficulty with the
expanding Universe is that the density of matter varies with time according to the
approximate relation

ρ � 1
Gt2

. (10.5.1)
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The characteristic time for this decrease in density is therefore

τ = ρ
ρ̇
� t � 1

(Gρ)1/2
, (10.5.2)

which is the same order of magnitude as the characteristic time for the growth
of long-wavelength density perturbations in the Jeans instability analysis, Equa-
tion (10.2.13). Qualitatively, we expect that any fluctuation on a scale less than
λJ would oscillate like an acoustic wave as before. A fluctuation with wavelength
λ > λJ would be unstable but would grow at a reduced rate compared with the
exponential form of the previous result. Let us suppose that there is in fact a small
perturbation δρ > 0 with wavelength λ > λJ; the growth of the fluctuation must
be slower than in the static case because the fluctuation must attract material
from around itself which is moving away according to the general expansion of
the Universe. In fact, we shall find later in this chapter that there are two modes
of perturbation, one growing and one decaying, where δ = δρ/ρ varies according
to

δ+ ∝ t2/3, δ− ∝ t−1, (10.5.3)

in a matter-dominated Einstein–de Sitter universe, and

δ+ ∝ t, δ− ∝ t−1, (10.5.4)

if the universe is flat and radiation dominated. We shall derive these results in
more detail later on, but one can get a good physical understanding of how Equa-
tion (10.5.3) arises by using a simple semi-quantitative approximation. From Equa-
tion (10.2.12a) we find formally that, for λ� λJ, we have

δ̇ = ±|ω|δ = ±(4πGρ)1/2δ, (10.5.5)

where we have now put ρ in place of ρ0. The density ρ varies in a flat matter-
dominated universe according to the relation

ρ = 1
6πGt2

. (10.5.6)

Substituting (10.5.6) into (10.5.5) and integrating yields

δ± = At±
√
2/3, (10.5.7)

where the ‘constant’ A can be interpreted as the amplitude of a wave of imaginary
period, in the manner of Equation (10.2.12). In reality the amplitude of oscilla-
tion of a system varies if its parameters are variable in time. If these parameters
vary slowly in time, one can apply the theory of adiabatic invariants. The critical
assumption of this theory is that, in whatever oscillating system is being studied,
physical parameters determining the period of oscillation (such as the length of a
simple pendulum) vary on a timescale τ which is much longer than P , the period
of the oscillations themselves. In a simple pendulum under these conditions, the
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energy E and the frequency of oscillations ν will vary in such a way that the ratio
E/ν remains fixed; E/ν is thus called an adiabatic invariant. Applying this the-
ory to the expanding Universe, we find that physical quantities determining the
nature of oscillations vary on a timescale τ � a/ȧ � t, so that one can hope to
apply the theory of adiabatic invariants for length scales λ = vsP < vst � λJ (for
λ > λJ there is an instability, which can be thought of as an oscillation with an
imaginary period; in such a case we cannot apply the theory, because |P | > t).
The acoustic energy carried in a volume V by a sinusoidal wave is just

E =
(
1
2ρδv

2 + v
2
s

2ρ
δρ2

)
V = v

2
s δρ2

ρ
V, (10.5.8)

where δv and δρ are the amplitude and the velocity of a density wave, respec-
tively. The last part of Equation (10.5.8) is implicit in Equation (10.2.10b) of the
previous chapter, for λ λJ. The adiabatic invariant is then just

E
ν
� E λ

vs
= const. (10.5.9)

If the Universe is sufficiently dense, there exists an interval between matter–
radiation equivalence and recombination inwhich ρ � ρm andp � pr ∝ ρr ∝ ρ4/3m ;
here the acoustic waves we have been considering have a sound speed

vs �
(
pr
ρm

)1/2
∝ ρ1/6m ∝ a−1/2. (10.5.10)

In this case Equations (10.5.8) and (10.5.9) give

δ∝ t−1/6, (10.5.11)

which, if interpreted as being the correct growth law also for the amplitude of
waves with λ � λJ, suggests that the quantity A in (10.5.7) should vary as t−1/6
during the period between equivalence and recombination. If we assume that this
law can be extrapolated also to late times (after recombination), one can obtain
the following expressions for the growing and decreasing modes, respectively:

δ+ ∝ t−1/6+
√
2/3 � t0.65, (10.5.12a)

δ− ∝ t−1/6−
√
2/3 � t−0.98, (10.5.12b)

which is remarkably close to the correct results given in Equation (10.5.3).

10.6 Newtonian Theory in a Dust Universe

Having mentioned the basic properties of the Jeans instability in the expanding
Universe, and given some approximate physical arguments for the results, we
should now putmore flesh on these bones and go through a systematic translation
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of the previous chapter into the framework of the expanding universe models. For
simplicity, we concentrate upon the case of a dust (zero-pressure) model, and we
shall adopt a Newtonian approach as before.
The system of Equations (10.2.1) admits a solution that describes the expansion

(or contraction) of a homogeneous and isotropic distribution of matter:

ρ = ρ0
(
a0
a

)3
, (10.6.1a)

v = ȧ
a
r, (10.6.1b)

ϕ = 2
3πGρr

2, (10.6.1 c)

p = p(ρ, S), (10.6.1d)

s = const.; (10.6.1 e)

r is a physical coordinate, related to the comoving coordinate r0 by the relation

r = r0 aa0 . (10.6.2)

One defect of the solution (10.6.1) is that for r → ∞, both v and ϕ diverge. Only
a relativistic treatment can remedy this problem, so we shall ignore it for the
present, making some comments later, in Section 11.12, on the correct analysis.
We proceed by looking for small perturbations δρ, δv, δϕ and δp to the zero-

order solution represented by Equations (10.6.1). The equations for the perturba-
tions can then be written

δ̇ρ + 3
ȧ
a
δρ + ȧ

a
(r · ∇)δρ + ρ(∇ · δv) = 0, (10.6.3a)

δ̇v + ȧ
a
δv + ȧ

a
(r · ∇)δv = −1

ρ
∇δp −∇δϕ, (10.6.3b)

∇2δϕ − 4πGδρ = 0, (10.6.3 c)

δ̇s + ȧ
a
(r · ∇)δs = 0, (10.6.3d)

where the dots denote partial derivatives with respect to time. We now neglect the
terms in r ·∇ because we make the calculations in a coordinate system where the
background velocity v is zero. In fact, this trick does not always work: these terms
actually correspond to terms which appear only in the Newtonian framework and
they give rise to inconsistencies if there is a non-zero pressure; see Lima et al .
(1997).
As we did earlier, we now look for solutions in the form of small plane-wave

departures from the exact solution represented by (10.6.1):

δui = ui(t) exp(ik · r), (10.6.4)
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where the variables ui, for i = 1,2,3,4, are related to the quantities D, V , Φ, Σ
introduced in Section 10.2; their amplitudes here, however, have to depend on
time; the perturbation in the pressure is again expressed in terms of δρ and δs.
The ui(t) cannot be functions of the type u0i exp(iωt), because the coefficients
of the equations depend on time. We should also note that the wavevector k cor-
responds to a wavelength λ which varies with time according to the law (10.6.2),
simply because of the expansion of the Universe:

k = 2π
λ

= 2π
λ0
a0
a

= k0a0a ; (10.6.5)

for this reason the exponential in (10.6.4) does not depend upon time. One can
obtain (after somework!) the perturbation equations corresponding to those given
in (10.2.5):

Ḋ + 3
ȧ
a
D + iρk · V = 0, (10.6.6a)

V̇ + ȧ
a
V + iv2s k

D
ρ
+ i
k
ρ

(
∂p
∂s

)
ρ
Σ + ikΦ = 0, (10.6.6b)

k2Φ + 4πGD = 0, (10.6.6 c)

Σ̇ = 0. (10.6.6d)

This system admits a static (time-independent) solution of entropic type, in which

δs = Σ0 exp(ik · r). (10.6.7)

The vortical solutions can be obtained by puttingD = Φ = Σ = 0 and the condition
that V is perpendicular to k. From (10.6.6b) we get

V̇ + ȧ
a
V = 0, (10.6.8)

which has solutions

V = V0a0a , (10.6.9)

with V0 perpendicular to k. The Equation (10.6.9) can be obtained in another way,
by applying the law of conservation of angular momentum L, due to the absence
of dissipative processes,

L � ρa3Va = const. (10.6.10)

(V is the modulus of V ).
The solutions with Σ = 0 and V parallel to k are more interesting from a cos-

mological point of view. In this case the Equations (10.6.6) become

Ḋ + 3
ȧ
a
D + iρkV = 0, (10.6.11a)

V̇ + ȧ
a
V + ik

(
v2s −

4πGρ
k2

)
D
ρ

= 0. (10.6.11b)
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Putting D = ρδ in (10.6.11a) gives

δ̇+ ikV = 0, (10.6.12)

which, upon differentiation, yields

δ̈+ ik
(
V̇ − ȧ

a
V
)
= 0. (10.6.13)

Obtaining V and V̇ from (10.6.12) and (10.6.13) and substituting in (10.6.11b)
gives

δ̈+ 2
ȧ
a
δ̇+ (v2s k2 − 4πGρ)δ = 0, (10.6.14)

which in the static case and with δ ∝ exp(iωt) corresponds to the dispersion
relation (10.2.7).
As we shall see, for wavelengths λ such that the second term in the parentheses

in (10.6.14) is much less than the first, i.e. for λ λJ, where

λJ � vs
(
π
Gρ

)1/2
, (10.6.15)

we have two oscillating solutions, while for wavelengths λ � λJ we have two
solutions which involve the phenomenon of gravitational instability.

10.7 Solutions for the Flat Dust Case

The solutions of Equation (10.6.13) depend on the background model relative to
which the perturbations are defined. The simplest model we can look at is the flat,
matter-dominated Einstein–de Sitter universe which we shall use first to derive
some key results. In this model,

ρ = 1
6πGt2

, (10.7.1a)

a = a0
(
t
t0

)2/3
, (10.7.1b)

ȧ
a
= 2
3t
, (10.7.1 c)

and the velocity of sound, assuming that the matter comprises monatomic parti-
cles of massm, is given by

vs =
(
5kBTm
3m

)1/2
=
(
5kBT0m
3m

)1/2a0
a
. (10.7.2)

Substituting these results into (10.6.13), one obtains

δ̈+ 4
3
δ̇
t
− 2
3t2

(
1− v2s k2

4πGρ

)
δ = 0. (10.7.3)
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This equation, for k → 0, is solved with a trial solution of the form δ ∝ tn, with
n constant; one gets the exact result that there are two modes, one growing,

δ+ ∝ t2/3, (10.7.4)

and one decaying,

δ− ∝ t−1. (10.7.5)

One can try to solve Equation (10.7.3) in the case k ≠ 0 using the same trial
solution. We obtain

δρ
ρ

∝ t−[1±5(1−6v2s k2/25πGρ)1/2]/6 exp(ik · r). (10.7.6)

This power-law solution is, in fact, only correct with constant n for k → 0, but
the approximate solution (10.7.6) yields important physical insights. When the
expression inside the square root in Equation (10.7.6) is positive, that is for

λ > λ′J =
√
24
5
vs
(
π
Gρ

)1/2
, (10.7.7)

the solutions of (10.7.3) represent the gravitational instability of the system
according to which the density fluctuations grow with time. When λ < λ′J, there
are oscillating solutions.
As we mentioned above, the solutions for λ ≠ 0 are approximate because they

are derived under the assumption that the index n of the trial power-law solu-
tion is constant in time. In general, however, it will depend on time through
the behaviour of the ratio λ′J/λ. We shall discuss this fact in more detail later,
in §10.10. The exponent n does not depend on time if the equation of state is
of the form p ∝ ρ4/3 (i.e. in the plasma epoch with z < zeq). In this case the
Equation (10.7.4) is exact, and the term in t−1/6 which comes from (10.7.7) can
be obtained using the theory of adiabatic invariants in the manner discussed in
Section 10.6.
It is also worth noting the fact that the Jeans length λJ is identical to that intro-

duced in Equation (10.2.6) of the previous chapter. In this respect, no new physics
is involved when one moves to the expanding (or contracting) case.

10.8 The Growth Factor

The Equation (10.6.13) admits analytic solutions for λ� λJ also in models where
Ω0 ≠ 1. Using the parametric variables ϑ and ψ introduced in Section 2.4 and
substituting in (10.6.14) yields the equations

(1− cosϑ)
d2δ
dϑ2

+ sinϑ
dδ
dϑ

− 3δ = 0, (10.8.1)



220 Introduction to Jeans Theory

for Ω0 > 1, and

(coshψ− 1)
d2δ
dψ2

+ sinhψ
dδ
δψ

− 3δ = 0, (10.8.2)

for Ω0 < 1. They have solutions of increasing and decreasing type of the form

δ+ ∝ − 3ϑ sinϑ
(1− cosϑ)2

+ 5+ cosϑ
1− cosϑ

, (10.8.3a)

δ− ∝ sinϑ
(1− cosϑ)2

, (10.8.3b)

for Ω0 > 1, and

δ+ ∝ − 3ψ sinhψ
(coshψ− 1)2

+ 5+ coshψ
coshψ− 1

, (10.8.4a)

δ− ∝ sinhψ
(coshψ− 1)2

, (10.8.4b)

for Ω0 < 1. The relationship between proper time t and the parametric variables
ψ and ϑ is given in Section 2.4. In both cases one can verify that, for small values
of ϑ or ψ, that is for t t0, one obtains Equation (10.5.3), so that all these cases
are identical at early times when the curvature terms in the Friedmann equations
are negligible. It is interesting to note that in open universes the growing solution
δ+ remains practically constant for coshψ � 5, which corresponds to a redshift
z � z∗ � 2

5Ω if Ω 1; we shall also come across this result later in this section.
Now that we have obtained a number of solutions for different cosmological

models, it is helpful to introduce a general notation to describe the growth of fluc-
tuations. The name growth factor is given to the relative size of the solution δ+ as
a function of t: thus, the growth factor in the interval (ti, t0) isAi0 = δ+(t0)/δ+(ti).
For reasons which will become clearer later on, the most interesting value of the
growth factor will be that relative to ti = trec. From Equations (10.8.3a), (10.7.3)
and (10.8.4a) concerning δ+ and (2.4.6), (2.2.6a) and (2.4.2) we obtain:

Ar0 = (1+ zrec)5[−3ϑ0 sinϑ0 + (1− cosϑ0)(5+ cosϑ0)]
(1− cosϑ0)3

, (10.8.5)

for Ω0 > 1, where cosϑ0 = (2Ω−1
0 − 1);

Ar0 = 1+ zrec, (10.8.6)

for Ω0 = 1;

Ar0 = (1+ zrec)5[−3ψ0 sinhψ0 − (1− coshψ0)(5+ coshψ0)]
(coshψ0 − 1)3

, (10.8.7)

for Ω0 < 1, where coshψ0 = (2Ω−1
0 − 1). The growth factor Ar0 is an increasing

function of the density parameter Ω: it varies from a value of 10 for Ω0 � 10−2,
to a value of order 300 for Ω0 � 10−1, to 1500 for Ω0 = 1, and 3000 for Ω0 � 4.
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To give a more succinct summary of the effect of cosmology on the growth of
perturbations, it is helpful to introduce the quantity f , defined by

f(Ω0) ≡ d logδ+
d loga

. (10.8.8)

This gives the growth factor relative to the Einstein–de Sitter case with the advan-
tage that it does not require a translation between scale factor and time. It is an
extremely helpful approximation to take

f(Ω0) � Ω0.6 (10.8.9)

for models with Λ = 0 (Peebles 1980). If there is a cosmological constant, it actu-
ally does not make much difference to f . A better fit in such cases is

f � Ω0.6
0 + ΩΛ

70
(1+ 1

2Ω0). (10.8.10)

10.9 Solution for Radiation-Dominated Universes

The procedure followed in Section 10.6 for a matter-dominated universe can also
be followed, with appropriate modifications, for a universe which is radiation
dominated. As we have already noted, in radiation universes the gravitational
‘source’ in the Einstein equations must include pressure terms, so a Newtonian
treatment will not suffice. For pure radiation we have that ρ + 3p/c2 = 2ρ. As
well as the equations of energy and momentum conservation, we must also take
account of the effect of radiation pressure. One can demonstrate that the rela-
tivistic analogues of Equations (10.5.1) can be written in the form

∂ρ
∂t

+∇ ·
(
ρ + p

c2

)
v = 0, (10.9.1a)

(
ρ + p

c2

)(
∂v
∂t

+ v · ∇v
)
+∇p +

(
ρ + p

c2

)
∇ϕ = 0, (10.9.1b)

∇2ϕ − 4πG
(
ρ + 3

p
c2

)
= 0; (10.9.1 c)

we have not bothered to write down the appropriate law of conservation of
entropy, since we shall only be interested from now on in longitudinal adiabatic
perturbations. Following the same method as we did in Section 10.6, we arrive at
equations which are analogous to Equation (10.6.13):

δ̈+ 2
ȧ
a
δ̇+ (v2s k2 − 32

3 πGρ)δ = 0, (10.9.2)

in which the velocity of sound is now vs = c/
√
3. Let us concentrate upon finding

the solution for a flat universe, which will be a good approximation to our Universe
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before matter–radiation equivalence. For this model we have

ρ = 3
32πGt2

, (10.9.3a)

a = aeq
(
t
teq

)1/2
, (10.9.3b)

ȧ
a
= 1
2t
, (10.9.3 c)

which, upon substitution in (10.9.2), gives

δ̈+ δ̇
t
− 1
t2

(
1− 3v2s k2

32πGρ

)
δ = 0. (10.9.4)

For k→ 0 Equation (10.9.4) is solved by δ∝ tn, with n constant; one again gets a
growing mode, but in the form

δ+ ∝ t, (10.9.5)

while the decaying mode is again of the form

δ− ∝ t−1. (10.9.6)

Looking for solutions of the power-law form also for k ≠ 0, one finds similar
(non-exact) results to those in Section 10.7, but with λ′J given by

λ′J = vs
(
3π
8Gρ

)1/2
. (10.9.7)

Going further still, one can extend these analyses to models with a general equa-
tion of state of the form p = wρc2, with w constant and vs ≠ 0. In general one
now has vs = w1/2c for w > 0, but for a matter-dominated universe (w � 0) the
value of vs must be defined in an appropriate manner. For example in the case
w = 0, which corresponds either to dust or a collisionless fluid, v2s is of order the
mean square velocity of the particles. In any case, the general result for λ′J can be
written

λ′J =
√
24

5+ 9w
vs
(
π
Gρ

)1/2
, (10.9.8)

and the increasing and decreasing modes for scale λ� λ′J are of the exact form

δ+ ∝ t2(1+3w)/3(1+w), (10.9.9)

δ− ∝ t−1. (10.9.10)
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10.10 The Method of Autosolution

There is another method which can be used to study the evolution of perturba-
tions in the regime with λ� λJ: the method of autosolution, pioneered in a paper
by Zel’dovich and Barenblatt (1958). This method is based on the property that a
spherical perturbation with diameter λ� λJ evolves in exactly the same manner
as a universe model. This is essentially a consequence of Birkhoff’s theorem in
general relativity, which is the relativistic analogue of Newton’s famous Spherical
Theorem. In the simplest case of a sphere which is homogeneous and isotropic,
the evolution is just that of a Friedmann model with parameters differing slightly
from the surrounding (unperturbed) universe. In particular, the density ρp inside
the perturbation will be different from the density of the universe ρ; the differ-
ence betweenρp andρ evolves with time because the interior and exterior universe
evolve according to different equations.
The Friedmann equations regarding the evolution of a universe comprised of a

fluid with equation of state p = wρc2 can be written in the form

ȧ2 = Aa−(1+3w) + B, (10.10.1)

where the constants A and B are given by

A = ȧ20Ω0wa1+3w0 , (10.10.2a)

B = ȧ20(1−Ω0w). (10.10.2b)

It is clear that Equation (10.10.1) just represents conservation of energy. To obtain
the evolution of ρp we consider perturbations of the total energy or, alternatively,
of the time of origin of the expansion of themodel described by Equation (10.10.1).
Concerning the energy, we have

ȧ2p = Aa−(1+3w)p + B + ε, (10.10.3)

where ε is such that

|ε|  |Aa−(1+3w)p + B|; (10.10.4)

this quantity is proportional to the perturbation to the energy. We can easily
obtain, from (10.10.1) and (10.10.3), that

t =
∫ a
0

da
[Aa−(1+3w) + B]1/2 =

∫ ap
0

da
[Aa−(1+3w) + B + ε]1/2 , (10.10.5a)

which can be approximated by

t �
∫ ap
0

da
[Aa−(1+3w) + B]1/2 − 1

2ε
∫ ap
0

da
[Aa−(1+3w) + B]3/2 . (10.10.5b)

Using the fact that
∫ ap
0 f(a)da−

∫ a
0 f(a)da � (ap−a)f(a), from equation (10.10.5)

we find

δa = ap − a � 1
2ε[Aa

−(1+3w) + B]1/2
∫ ap
0

da
[Aa−(1+3w) + B]3/2 , (10.10.6a)
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which gives

δ � 1
2ε[Aa

−(1+3w) + B]1/2
∫ a
0

da
[Aa−(1+3w) + B]3/2 . (10.10.6b)

The evolution of the perturbation δ = (ρp − ρ)/ρ is therefore given by

δ = −3(1+w)δa
a

� −3
2(1+w)ε

[Aa−(1+3w) + B]1/2
a

∫ a
0

da
[Aa−(1+3w) + B]3/2 .

(10.10.7)

The sign of ε has the opposite sense to that of δ: an underdense region has an
excess of energy compared with the background universe, and vice versa. In the
special case of a flat universe the total energy, which is related to B, is exactly
zero, and Equation (10.10.7) becomes

δ � −3(1+w)
5+ 9w

ε
A
a1+3w ∝ t2(1+3w)/3(1+w), (10.10.8)

which coincides with the result given in Equation (10.9.6). In the case of an open
universe, for t � t∗ (see Section 2.3), we have instead that A � 0 and, from
(10.10.7), we obtain

δ � −3
2(1+w)

ε
B
= const., (10.10.9)

in accordance with the result found forw = 0 in Section 11.4. This result can also
be obtained by observing that, for t � t∗, the characteristic time for the Jeans
instability to grow, τJ � (Gρ)−1/2, is much greater than the characteristic time of
the expansion of the universe, τH = a/ȧ. In fact, one can easily show, using the
formulae derived in Section 2.3, that

τJ � 1
(Gρ)1/2

� 1
(Gρ∗)1/2

(
t
t∗

)3(1+w)/2
, (10.10.10)

while we have

τH = a
ȧ
� t∗

(
t
t∗

)
� 1
(Gρ∗)1/2

t
t∗
, (10.10.11)

from which
τJ
τH

�
(
t
t∗

)(1+3w)/2
� 1. (10.10.12)

Equation (10.10.7) represents the solution that increases with respect to time, δ+.
To obtain the decreasing solution δ−, one must perturb the time at which the
expansion begins. We have, respectively, that

t =
∫ a
0

da
[Aa−(1+3w) + B]1/2 , (10.10.13a)

t − τ =
∫ ap
0

da
[Aa−(1+3w) + B]1/2 , (10.10.13b)
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where the parameter τ represents the time lag (either positive or negative)
between the perturbed and unperturbed solutions. From the preceding equations
one obtains

τ � − δa
[Aa−(1+3w) + B]1/2 , (10.10.14)

from which

δ � 3(1+w)τ [Aa
−(1+3w) + B]1/2

a
. (10.10.15)

The sign of δ is this time the same as the sign of τ . In the special case of the flat
Einstein–de Sitter model we have, in accordance with our previous calculations,

δ � 3(1+w)τA1/2a−3(1+w)/2 ∝ t−1; (10.10.16)

for an open universe with t� t∗ we obtain

δ � 3(1+w)τ B
1/2

a
∝ t−1, (10.10.17)

with a behaviour as a function of time which is in this case independent of w. In
general, however, Equation (10.10.15) represents a decreasing perturbation with
a behaviour that depends upon w.

10.11 The Meszaros Effect

As we shall see later on, in a universe composed of non-relativistic matter and
relativistic particles (radiation, massless neutrinos, etc.), there can exist a mode
of perturbation in which the non-relativistic component is perturbed with respect
to a homogeneous distribution while the relativistic component remains unper-
turbed. If the matter component is entirely baryonic, this type of perturbation
is often called isothermal , and a picture of structure formation based on this
type of fluctuation was popular in the 1970s. In the 1980s, alternative scenarios
were developed in which an important role is played by various forms of non-
baryonic matter (massive neutrinos, axions, photinos, etc.): perturbations which
involve this component and not the others (baryons, photons, massless neutri-
nos) are usually termed isocurvature fluctuations, because these fluctuations do
not modify the local spatial curvature. It is consequently important to study the
evolution of perturbations of a non-relativistic component with density ρnr in a
universe dominated by a fluid of relativistic particles of density ρr. The Universe
is dominated by such a fluid at redshifts given by the inequality (5.3.4).
The problem of the evolution of perturbations through zeq has been studied

by various authors, the first being Meszaros (1974): one finds that the growing-
mode perturbation δnr remains ‘frozen’ until zeq even when λ� λJ. This effect of
freezing-in of perturbations or ‘stagnation’ or the Meszaros effect is very impor-
tant formodels in which galaxies and clusters of galaxies are formed by the growth
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of primordial fluctuations in a universe dominated by cold darkmatter. We should
point out that this effect does not require perturbations of isocurvature form: it is
a generic feature of models with a period of domination by relativistic particles.
To form structure one requires at the very least that the perturbations to the non-
relativistic particle distribution, δnr, should be of order unity. The time available
for fluctuations to grow from a small amplitude up to this is changed if there is
an extended period of stagnation. The problem is exacerbated if Ω  1 because
of the freezing out of perturbations when the universe becomes dominated by
curvature. We shall describe the detailed consequences of this effect later; for the
moment let us just describe the basic physics.
Let us begin with a qualitative argument. The characteristic time for a gravita-

tional instability process to boost the perturbations in the non-relativistic compo-
nent δnr is given by the Jeans timescale, τJ � (Gρnr)−1/2, while the characteristic
time for the expansion of the universe is given by τH � (Gρr)−1/2 before zeq;
the two timescales are similar after zeq. Consequently, as long as the Universe is
dominated by the relativistic component, the fluctuations in the other component
remain frozen; the perturbation can only grow after zeq.
We can now study this effect in an analytical manner, restricting ourselves for

simplicity to the case of a flat universe and λ� λJ. Introducing the variable

y = ρnr
ρr

= a
aeq
, (10.11.1)

one finds that the equation describing the perturbation in the non-relativistic
component δ = δρnr/ρnr becomes

δ̈+ 2
ȧ
a
δ̇− 4πGρnrδ = 0. (10.11.2)

One then obtains

d2δ
dy2

+ 2+ 3y
2y(1+y)

dδ
dy

− 3δ
2y(1+y) = 0, (10.11.3)

which has, as usual, two solutions, one increasing and one decreasing. We shall
forget about the decaying mode from now on: interested readers can calculate the
relevant behaviour for the decaying mode themselves. We have

δ+ ∝ 1+ 3
2y. (10.11.4)

Before zeq (y < 1) the growing mode is practically frozen: the total growth in the
interval (0, teq) is only

δ+(y = 1)
δ+(y = 0)

= 5
2 ; (10.11.5)

after zeq the solution rapidly matches the law in a matter-dominated Einstein–
de Sitter universe:

δ+(y � 1)∝ y ∝ a∝ t2/3. (10.11.6)
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10.12 Relativistic Solutions

As we have already explained, the solution of the linear evolution of perturba-
tions, i.e. perturbations with |δ|  1, in Friedmann models within the frame-
work of general relativity was studied for the first time by Lifshitz (1946). In the
relativistic approach one proceeds in a quite different manner from the Newto-
nian treatment we have concentrated upon so far. The fundamental object one
should treat perturbatively is usually taken to be the metric gij , to which one
adds small perturbations hij . One problem that arises immediately is to distin-
guish between real physical perturbations, and those that arise purely from the
choice of reference coordinate system. These latter perturbation modes are called
‘gauge modes’ and one can avoid them by choosing a particular gauge and then
finding the gauge modes by hand, or by choosing gauge-invariant combinations
of physical variables. In any case, the perturbed metric becomes

g′ij = gij + hij. (10.12.1)

For the energy–momentum tensor one adopts a tensor T ′
ij , which is perturbed

relative to an ideal fluid, so that ρ, p and Ui are perturbed relative to their values
in the background Friedmannmodel. One then writes down the Einstein equations
in terms of the (perturbed) metric g′ij and the (perturbed) energy–momentum
tensor T ′

ij . The procedure is complicated from an analytical point of view, so we
just summarise the results here. We find there are three perturbation types which
can be classified as tensor , vector and scalar modes.
There are in fact two solutions of tensor type, both corresponding to the prop-

agation of gravitational waves. Gravitational waves are described by an equation
of state of radiative type and their amplitude hij varies with time according to

hij ∝ const., hij ∝ t−1 (10.12.2a)

for a matter-dominated Einstein–de Sitter universe, and according to

hij ∝ const., hij ∝ t−1/2 (10.12.2b)

for the analogous radiation-dominated universe. The solutions (10.12.2) corre-
spond to wavelengths λ � ct; for λ  ct we have instead two oscillating solu-
tions:

hij ∝ t5/8J±3/2(3ckt), hij ∝ t3/4J±1/2(2ckt), (10.12.3)

where J are Bessel functions.
While the tensor modes have no Newtonian analogue, the vector modes are

similar to phenomena which appear in the Newtonian analysis. They correspond
to rotational modes in the velocity field, which have velocity v perpendicular to
the wavevector k. Their amplitude varies according to

vt ∝ [(ρc2 + p)a4]−1 (10.12.4)
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which, in a matter-dominated universe with p ρc2 ∝ a−3, becomes

vt ∝ a−1, (10.12.5a)

corresponding to (10.6.8), while for a radiation-dominated universe we have

vt = const. (10.12.5b)

The Equation (10.12.4) can, in a certain sense, be interpreted as a kind of conser-
vation law for angular momentum L, in which one replaces the matter density by
(ρ + p/c2). Equation (10.12.4) can then be written in the form

L � (ρ + p/c2)a3vta � const., (10.12.6)

which is known as Loytsianski’s theorem, an extension of Equation (10.6.10).
The final perturbation type, the scalar mode, actually represents the longitudi-

nal compressional density wave we have been discussing in most of this chapter.
One finds in the relativistic approach the same results as we have introduced in
a Newtonian approximation.
In modern cosmological theories involving inflation the relativistic treatment is

extremely important; while we can handle the growth of fluctuations inside the
horizon Rc adequately using the Newtonian treatment we have described, fluctu-
ations outside the horizon must be handled using general relativity. In particular,
in inflationary theories one must consider the super-horizon evolution of scalar
fluctuations, i.e. when λ > Rc , in a model where the equation of state is of the
form p = wρc2, with w < −1

3 . We mention this problem again in Section 13.6.
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see also Zel’dovich (1965). For detailed perturbation theory and alternative for-
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(1983), Kodama and Sasaki (1984), Efstathiou (1990) and Peacock (1999).

Problems

1. Calculate the Jeans length for air at room temperature.

2. How is the expression for the Jeans length modified in the presence of a magnetic
field?

3. Derive Equations (10.6.6a) and (10.6.6b).

4. Show that the solutions to (10.7.3) for finite λ > λ′J have the form given by equa-
tion (10.7.6). Thus obtain the correct form in the limit λ→∞, i.e. δ+ ∝ t2/3, δ− ∝ t−1.

5. Derive Equation (10.11.3) and obtain the growing mode solution (10.11.4).
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11.1 Introduction

In this chapter we shall apply the principle of the Jeans instability to models of the
Universe in which the dominant matter component is baryonic. As we shall see,
the adoption of a realistic physical fluid brings in many more complications than
we found in our previous analyses of gravitational instability in purely dust or
radiation universes. The interaction of matter with radiation during the plasma
epoch is one such complication which we have not addressed so far. Although
the baryon-dominated models are in this sense more realistic than the simple
ones we have used in our illustration of the basic physics, we should make it
clear at the outset that these models are not successful at explaining the origin
of the structure observed in our Universe. In the next chapter we shall explain
why this is so and why models including non-baryonic weakly interacting dark
matter may be more successful than the baryon-dominated ones. Nevertheless,
we feel it is important to study the baryonic situation in some detail. Our primary
reason for this is pedagogical. Although it is believed that there is non-baryonic
matter, there certainly are baryons in our Universe. Whatever the dominant form
of the matter, we must in any case understand the behaviour of baryons in the
presence of radiation during the cosmological expansion. The simplest way to
understand this behaviour is to study a model which includes only these two
ingredients. Once we have understood the physics here, we can go on to study
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the effect of other components. The baryon-dominated models also provide an
interesting insight into the history of the study of large-scale structure, and their
analysis is an interesting part of the development of the subject in the late 1960s
and in the 1970s. We begin with some comments on the form of perturbations in
baryonic models.

11.2 Adiabatic and Isothermal Perturbations

Before recombination, the Universe was composed of a plasma of ionised matter
and radiation, interacting via Compton scattering with characteristic times given
by τeγ and τγe, described in Section 9.2. For simplicity we neglect the presence of
helium nuclei in this plasma, and take it to be composed entirely of protons and
electrons. We shall also neglect the role of neutrinos in most of this discussion.
As we have seen in Chapter 10, there exist a number of possible perturba-

tion modes in a self-gravitating fluid. There are vortical perturbations (transverse
waves) which do not interest us here. There are also perturbations of adiabatic
or entropic type, the first time dependent, the second independent of time in the
static case studied in Chapter 10. The distinction between these two latter types of
perturbation remains when one moves to the cosmological case of an expanding
background model.
The entropy per unit mass of a fluid composed of matter and radiation in a

volume V has a very high value because of the enormous value of the entropy per
baryon σr. In other words, the entropy is carried almost entirely by the radiation:

S = 4
3σT

3V ∝ σrad ∝ T 3

ρm
∝ ρ3/4r

ρm
. (11.2.1)

A perturbation which leaves S invariant – an adiabatic perturbation – is made up
of perturbations in both the matter density ρm and the radiation density ρr (or,
equivalently, T , the radiation temperature) such that

δS
S

= δσrad
σrad

= 3
4
δρr
ρr

− δρm
ρm

= 3δT
T

− δρm
ρm

= 0; (11.2.2)

this means that

δm ≡ δρm
ρm

= 3
δT
T

= 3
4
δρr
ρr

≡ 3
4
δr. (11.2.3)

As we have seen in Section 7.4, the value of σrad may be explained by microscopic
physics involving a GUT or electroweak phase transition. If such a microphysical
explanation is correct, one might expect small inhomogeneities to have the same
value of σr and therefore be of adiabatic type.
A perturbation of entropic type or an isothermal perturbation is such that a non-

zero perturbation in the matter component δm ≠ 0 is not accompanied by any
fluctuation in the radiation component. In other words there is no inhomogeneity
in the radiation temperature, hence the word isothermal. This type of fluctuation
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is closely related, but not identical, to the isocurvature fluctuations discussed in
the previous chapter and also in the next one. The physical reason why δT � 0
rests on the fact that such fluctuations are more or less independent of time; the
high thermal conductivity of the cosmological medium allows the temperature to
be levelled out by heat conduction. A perturbation with δρm ≠ 0 is held frozen
and therefore time independent by the strong frictional ‘drag’ forces between the
matter and radiation fluid. An exact treatment of this problem confirms, at least
to a first approximation, this division into two main types of perturbation.
After recombination, and the consequent decoupling of matter and radiation,

the perturbations δρm in the total matter density evolve in the same way regard-
less of whether they were originally of adiabatic or isothermal type. Because there
is essentially no interaction between the matter and radiation, and the radiation
component is dynamically negligible compared with the matter component, the
Universe behaves as a single-fluid dust model.
Before recombination a generic perturbation can be decomposed into a super-

position of adiabatic and isothermal modes which evolve independently; the two
modes can be thought of as similar to the normal modes of a dynamical system.
To understand what is going on it is therefore useful, as a first approximation, to
study the behaviour of each mode separately.

11.3 Evolution of the Sound Speed and Jeans Mass

As we have already explained, the distinction between adiabatic and isothermal
perturbations only has meaning before recombination. In this period we shall
denote the relevant sound speeds for the adiabatic and isothermal modes by v(a)s

and v(i)s , respectively.
The adiabatic sound speed, v(a)s , is that of a plasma with density ρ = ρm + ρr

and pressure p = pr + pm � pr � 1
3ρrc

2. We assume the neutrinos are massless.
Recalling Equation (11.2.3), we therefore have

v(a)s =
(
∂p
∂ρ

)1/2
S

� c√
3

[
1+

(
∂ρm
∂ρr

)
S

]−1/2
= c√

3

(
1+ 3

4
ρm
ρr

)−1/2
. (11.3.1)

This equation gives v(a)s � c/√3 for t  teq, while v
(a)
s � 0.76c/

√
3 for t = teq

and during the interval trec > t � teq, which exists only if Ωbh2 � 4 × 10−2, we
have

v(a)s � c√
3

(
4ρr
3ρm

)1/2
� c√

3

(
1+ z
1+ zeq

)1/2
� 2× 108

(
1+ z
1+ zeq

)1/2
m s−1. (11.3.2)

In the following considerations we assume for simplicity that v(a)s = c/√3 for
z � zeq and v(a)s = (c/√3)[(1+z)/(1+zeq)]1/2 for z � zeq. In reality the transition
between these two regimes will be much smoother than this.
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The isothermal sound speed v(i)s is that appropriate for a gas of monatomic
particles of massmp (the proton mass) and temperature Tm � Tr = T0r(1+z), i.e.

v(i)s =
(
∂pm
∂ρm

)1/2
S

=
(
γkBT
mp

)1/2
, (11.3.3)

with γ = 5
3 for hydrogen, which gives

v(i)s �
(
kBTrec
mp

)1/2( 1+ z
1+ zrec

)1/2
� 5× 105

(
1+ z
1+ zrec

)1/2
m s−1, (11.3.4)

where we have assumed that Trec = T(zrec) � 4000 K. The velocity of sound
associated with matter perturbations after zrec is given by v(i) and one finds that
Tm � Tr in this period only for z � 300; see Section 9.4. After this, until the
moment of reheating, Tm ∝ (1+z)2, so that Equation (11.3.4) should be modified.
However, as far as the origin of galaxies and clusters is concerned, the value of
v(i)s for z zrec is not important so we shall not discuss it further here.
We have already introduced the Jeans length, λJ. An alternative way of speci-

fying the physical scale appropriate for gravitational instability is to deal with a
mass scale. For this reason, we shall define the Jeans mass to be the mass con-
tained in a sphere of radius 1

2λJ

MJ = 1
6πρmλ

3
J ; (11.3.5)

in this expression we have assumed that, for any value of the equation-of-state
parameter w, the relation

λJ � vs
(
π
Gρ

)1/2
(11.3.6)

is a good approximation. More accurate expressions can be found in Section 10.9,
but we shall not use them in this order-of-magnitude analysis. It is useful to note
the obvious relation between mass and length scales M ∝ ρλ3 so that, for exam-
ple, 1 Mpc corresponds to 1011(Ω0h2)−1M�.
Before recombination we must distinguish between adiabatic and isothermal

perturbations. We begin with the Jeans mass associated with adiabatic pertur-
bations, M(a)J , for which one must insert the quantity v(a)s in place of vs in the
Equation (11.4.2). One should also use ρ = ρm + ρr because the total density is
included in the terms describing the self-gravity of the perturbation. For simplic-
ity we can adopt the approximate relations that ρ � ρr for z > zeq and ρ � ρm
for z < zeq. Together with the other approximations we have introduced above

for v(a)s we find that, for z � zeq,

M(a)J = 1
6πρm

[
c√
3

(
π
Gρ

)1/2]3
� M(a)J (zeq)

(
1+ z
1+ zeq

)−3
, (11.3.7a)

where

M(a)J (zeq) � 3.5× 1015(Ωh2)−2M�, (11.3.7b)
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while in the interval zeq > z > zrec, if it exists, we have

M(a)J � 1
6πρm

[
c√
3

(
1+ z
1+ zeq

)1/2( π
Gρ

)1/2]3
� MJ(zeq) � const. (11.3.8)

This is an approximate relation. In reality, if zeq � zrec, because ρr is small at zrec,
the value of the Jeans mass at recombination, M(a)J (zrec), will be about a factor
three higher than M(a)J (zeq).
Now turning to the isothermal perturbations, we must use the expression given

in Equation (11.3.4) for v(i)s in place of vs. We then find that, in the interval zeq >
z > zrec,

M(i)J � 1
6πρm

(
πkBTm
Gmpρm

)3/2
� const. � M(i)J,rec � 5× 104(Ωh2)−1/2M�. (11.3.9)

It is interesting to note that bothM(a)J andM(i)J remain roughly constant during the
interval (if it exists) between equivalence and recombination. After recombination,
since we are only interested in the matter perturbations, the Jeans mass MJ can
be taken to coincide with M(i)J while Tm � Tr, and then thereafter the behaviour is
roughly proportional to (1+ z)3/2.

11.4 Evolution of the Horizon Mass

An important concept which we have not yet come across in the study of gravi-
tational instability is that of the cosmological horizon. Essentially this defines the
scale over which different parts of a perturbation can be in causal contact with
each other at a particular epoch. We shall not worry too much here about the
technical issue of whether we should use the particle horizon, RH, or the radius
of the speed of light sphere, Rc, to characterise the horizon. In the case we are
considering here, these differ only by a factor of order unity anyway, so we shall
use the radius of the particle horizon, RH, to define the horizon mass by analogy
with the definition of the Jeans mass:

MH = 1
6πρR

3
H, (11.4.1)

which represents the total mass inside the particle horizon which of course
includes the effective mass contributed by the radiation. It is often more inter-
esting to consider only the baryonic part of this mass, since that is the part that
will dominate any structures that form after zrec. Thus we have

MHb = 1
6πρmR

3
H. (11.4.2)

Before equivalence, the Universe is well described by an Einstein–de Sitter model
of pure radiation for which, using results from Chapters 2 and 5 and with the
assumption that ρ � ρr,

MHb � 1
6πρm(2ct)

3 � MH(zeq)
(

1+ z
1+ zeq

)−3
, (11.4.3a)
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where

MH(zeq) � 5× 1014(Ωh2)−2M�, (11.4.3b)

which is a little less than M(a)J . For z � zeq and Ωz � 1, and using the same
approximations as the previous expression, we have

MHb � 1
6πρm(3ct)

3 � MH(zeq)
(

1+ z
1+ zeq

)−3/2
. (11.4.4)

By analogywith the relations (11.4.1) and (11.4.3) we can obtain before equivalence

MH � 1
6πρ(2ct)

3 � MH(zeq)
(

1+ z
1+ zeq

)−2
, (11.4.5)

while, for z < zeq, it becomes

MH � MHb � MH(zeq)
(

1+ z
1+ zeq

)−3/2
. (11.4.6)

We can define the horizon entry of amass scaleM to be the time (or, more usefully,
redshift) at which themass scaleM coincideswith themass inside the horizon. It is
most useful to write this in terms of the baryonic mass given by Equation (11.4.2).
The redshift of horizon entry for the mass scaleM is denoted zH(M) and is there-
fore given implicitly by the relation

MHb(zH(M)) = M. (11.4.7)

From Equation (11.4.3) we find that for M < MH(zeq)

zH(M) � zeq
(

M
MH(zeq)

)−1/3
, (11.4.8)

with zH(M) > zeq, while for M > MH(zeq) one obtains, using Equation (11.4.4),

zH(M) � zeq
(

M
MH(zeq)

)−2/3
, (11.4.9)

with zH(M) < zeq and zH(M) � Ω−1. The relations (11.4.8) and (11.4.9) will
be useful later in Chapter 14 when we look at the variance of fluctuations as a
function of their horizon entry.

11.5 Dissipation of Acoustic Waves

Having established two basic physical scales – the Jeans scale and the horizon
scale – which will play a strong role in the evolution of structure, we must now
investigate other physical processes which can modify the purely gravitational
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evolution of perturbations. We shall begin by considering adiabatic fluctuations
in some detail.
The most important physical phenomenon we have to deal with is the interac-

tion between matter and radiation during the plasma epoch and the consequent
dissipation due to viscosity and thermal conduction. We shall study the basic
physics in this section and the more detailed ramifications in Section 12.7. As we
shall see, dissipative processes act significantly on sound waves with a wavelength
λ, or an effective mass scale M = 1

6πρmλ
3, less than a certain characteristic scale

λD, called the dissipation scale whose corresponding mass scale, MD, is called the
dissipation mass. During the period in which we are interested (the period before
recombination), it turns out that MD  MJ for both adiabatic and isothermal per-
turbations; however, the dissipation mass for isothermal perturbations has no
practical significance for cosmology.
The effect of these dissipative processes upon an adiabatic perturbation is to

decrease its amplitude. From a kinetic point of view this is because of the phe-
nomenon of diffusion, which slowly moves particles into the region outside the
perturbation. One can assume for all practical purposes that, after a time t, a
perturbation of wavelength λ < λD(t), where λD(t) is the mean diffusion length
for particles in a time t, is totally dissipated. Given that the particles travel in an
arbitrary direction, the effect is a complete randomisation of the original fluctua-
tion so that it becomes smeared out and dissipated. The distance λD is obviously
connected with the mean free path l̄ of the particles.
On scales λ < l̄ the fluctuation is dissipated in a time of order the wave period

and over a distance of order the wavelength λ. In this case it does not make sense
to talk about diffusion, and the role of λD is taken by l̄. We therefore have free
streaming of particles, which is important in the models we discuss in the next
chapter, which have perturbations in a fluid of collisionless particles. On scales
λ� l̄, it is more illuminating to employ amacroscopic model, where dissipation is
attributed to the presence of viscosity η and thermal conductivity Dt. Evidently,
however, there is a strict connection between the coefficients of viscosity and
thermal conductivity on the one hand, and the coefficient of diffusion D and its
related length scale λD on the other. On scales λ � l̄ the model for dissipation we
must use cannot be a fluid model, but must be based on kinetic theory.
Let us elaborate these concepts in more mathematical detail. The phenomenon

of diffusion is described by Fick’s law :

Jm ≡ ρmv = −D∇ρm, (11.5.1)

where Jm is the matter flux caused by the density gradient∇ρm andD is called the
coefficient of diffusion. Together with the continuity equation, Equation (11.5.1)
furnishes Fick’s second law

∂ρm
∂t

−D∇2ρm = 0. (11.5.2)

There is a formal analogy of this relation with the equation of heat conduction

∂T
∂t

−Dt∇2T = 0 (11.5.3)
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(Dt = λt/ρct is the coefficient of thermal diffusion; ct is the specific heat; λt is the
thermal conductivity), which is obtained easily from the Fourier postulate about
conduction, similar to Equation (11.5.1), and from the calorimetric equation.
It is obvious from Equations (11.5.2) and (11.5.3) that the coefficients D and

Dt have the same dimensions as each other, and also the same as those of the
kinematic viscosity ν = η/ρ which appears in the Navier–Stokes equation

∂v
∂t

+ v · ∇v = −∇p
ρ

+ ν∇2v; (11.5.4)

according to this formal analogy, one is invited to interpret ν as a sort of coeffi-
cient of velocity diffusion. We have that

[D] = [Dt] = [ν] =m2 s−1. (11.5.5)

Adopting a kinetic treatment to confirm these relations, one finds that

D � Dt � ν � 1
3 v̄ l̄ =

1
3
l̄2

τ
= 1

3 v̄
2τ, (11.5.6)

where v̄ is the mean particle velocity and τ is the mean time between two con-
secutive particle collisions.
From a dimensional point of view, the mean distance d̄� l̄ affected after a time

t� τ by the three ‘diffusion’ processes described above are, respectively,

d̄d � (Dt)1/2, d̄t � (Dtt)1/2, d̄ν � (νt)1/2, (11.5.7)

which, by Equation (11.5.6), corresponds to

d̄ � l̄
(
t
τ

)1/2
. (11.5.8)

This relationship is easy to demonstrate by assuming that all these diffusion pro-
cesses can be attributed to the diffusion of particles by a simple random walk.
Following on from (11.5.8), the dissipation scale (or the diffusion scale) of an

acoustic wave at time t is therefore

λD(t) = l̄
(
t
τ

)1/2
= v̄(tτ)1/2 = (l̄v̄t)1/2. (11.5.9)

We define the dissipation time of a perturbation of wavelength λ by the quantity

τD(λ) = τ
(
λ
l̄

)2
= λ2

v̄2τ
= λ

2

l̄v̄
, (11.5.10)

i.e. the time when λD[τD(λ)] = λ. In particular, the times for dissipation through
thermal conduction and viscosity are, respectively,

τDt(λ) �
λ2

Dt
, τν(λ) � λ

2

ν
. (11.5.11)
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In a situation where both these phenomena are present, the characteristic time
for dissipation τdis(λ) is given by the relation

1
τdis(λ)

= 1
τν(λ)

+ 1
τDt(λ)

, (11.5.12)

characteristic of processes acting in parallel.
The full (non-relativistic) theory of dissipation of acoustic waves through vis-

cosity and thermal conduction yields the following result

1
τdis(λ)

≡ − Ė
E
= 4π2

λ2

[
4
3ν
(
1+ 3

4
ζ
η

)
+Dt(1− γ−1)

]
, (11.5.13)

where E is the mechanical energy transported by the sound wave, ζ is the sec-
ond viscosity, and γ is the adiabatic index. The Equation (11.5.13) verifies the
applicability of Equation (11.5.12).

11.6 Dissipation of Adiabatic Perturbations

We now apply the physics described in the previous section to adiabatic pertur-
bations in the plasma epoch of the expanding Universe described in Chapter 9.
In the period prior to recombination, when τep  τeγ(τγe), one can treat the
plasma–photon system as an imperfect radiative fluid, where the effect of dissi-
pation manifests itself as an imperfect thermal equilibrium between matter and
radiation. In this situation, the kinematic viscosity and the coefficient of thermal
diffusion are given by

ν � 4
15

ρrc2

ρr + ρmτγe �
4
5Dt. (11.6.1)

Equation (11.6.1) cannot be used in Equation (11.5.13), which was obtained in
a non-relativistic treatment. There are special processes which modify Equa-
tion (11.5.13) in the relativistic limit: for example the thermal conduction is not
proportional to∇T , but to∇T−[T/(p+ρc2)]∇p. In particular, Equation (11.5.11)
becomes

τDt =
λ2

4π2

(ρm + 4
3ρr

ρm

)2 6
c2τγe

, (11.6.2a)

τν = λ2

4π2

(ρm + 4
3ρr

ρr

)
45

8c2τγe
= 15ρ2m
16ρr(ρm + 4

3ρr)
τDt . (11.6.2b)

The net dissipation time is, from (11.5.12),

τdis = τDtτν
τDt + τν

. (11.6.3)
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Before equivalence, when ρr > ρm, we have

τν �
(
ρm
ρr

)2
τDt < τDt , (11.6.4)

from which

τdis � τν � λ2

4π2

15
2c2τγe

, (11.6.5)

while after equivalence, when ρm > ρr, we have

τν � ρmρr τDt > τDt , (11.6.6)

from which

τdis � τDt �
λ2

4π2

6
c2τγe

. (11.6.7)

Thus, before equivalence, the dissipation can be attributed mainly to the effect of
radiative viscosity and, after equivalence, it is mainly due to thermal conduction.
In any case the quantity τdis does not change by much between these two epochs:
Equations (11.6.5) and (11.6.7) show that, in the final analysis, the dissipation of
acoustic waves in the plasma epoch is due to the diffusion of photons.
As we have explained, we must consider dissipation after a time t on scales

characterised by a massM < MD(t) or by a length λ < λD(t). It is straightforward
to verify, within the framework of the approximations introduced above, that the
condition λ < λD(t) is identical to the condition that τdis(λ) < t. It therefore
emerges that

τdis(λ) =
(
λ
λD

)2
t =

(
M
MD

)2/3
t. (11.6.8)

For adiabatic perturbations of mass M < M(a)J (zeq), the time t is the inter-
val of time ∆t in which such perturbations evolve like acoustic waves: given
that MHb � M(a)J before equivalence, this interval is approximated by ∆t(M) �
t − t(zH(M)) � t, where now t stands for cosmological proper time; t(zH(M)) is
negligible with respect to t for the range of masses we are interested in.
Before equivalence the dissipation scale for adiabatic perturbations is, from

Equations (11.6.8) and (11.6.5),

λ(a)D � 2.3c(τγet)1/2, (11.6.9)

where t is given by Equation (5.6.7) and τγe is given by Equation (9.2.9). The cor-
responding dissipation mass scale is then given by

M(a)D = 1
6πρmλ

(a)3
D � 0.5

( mpc
σTG1/2

)3/2
(ρ20cρ

3
0rΩ

2)−1/4(1+ z)−9/2, (11.6.10a)
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which yields

M(a)D � 7× 1010(Ωh2)−5
(

1+ z
1+ zeq

)−9/2
M�. (11.6.10b)

If Ωh2 � 4× 10−2, then zrec � zeq and the mass scale for dissipation at recombi-

nation becomes M(a)D (zrec) � 1017M�.
If the Universe is sufficiently dense so that zeq > zrec, we can obtain in a similar

manner, using Equations (11.6.8), (11.6.7) and (2.2.6b) for the period zeq > z >
zrec, the result

λ(a)D � 2.5c(τγet)1/2. (11.6.11)

The dissipation mass scale is then

M(a)D � 0.9
( mpc
στG1/2

)3/2
(ρ0cΩ)−5/4(1+ z)−15/4

� 8× 107(Ωh2)−5
(

1+ z
1+ zeq

)−15/4
M�. (11.6.12)

At recombination we have M(a)D (zrec) � 1012(Ωh2)−5/4M�.
As we shall see, the value of M(a)D (zrec) is of great significance for structure

formation. Its magnitude depends on the density parameter through the quantity
Ω0h2. Approximate numerical values for 4 × 10−2 � Ω0h2 � 2 are 1017M� �
M(a)D (zrec) � 4 × 1011M�. The first to calculate the value of M(a)D (zrec) was Silk
(1967) – for this reason the quantity M(a)D is also known as the Silk mass. It is
interesting to note that

M(a)D � (MγMHb)1/2, (11.6.13)

whereMγ is the mass contained within a sphere of diameter lγ = cτγe. The reason
for the relation (11.6.13) is implicit in Equation (11.5.9).
In the case where there is a significant amount of non-baryonic matter so that

Ω ≠ Ωb, which is the case we shall discuss in the next chapter, Silk damping of
course still occurs, but the damping mass scale changes. It is a straightforward
exercise to show that, in this case, the corresponding value at zrec can be obtained
from the above case if zrec > zeq by changing Ω to Ωb and, if zrec < zeq, by
changing Ω to (ΩbΩ9)1/10.
The importance of the Silk mass can be explained as follows. Without taking

account of dissipative processes, the amplitude of an acoustic wave on a mass
scale M < M(a)J would remain constant in time during radiation domination and
would decay according to a t−1/6 law in the period between equivalence and recom-
bination. The dissipative processes we have considered cause a decrease of the
amplitude of such waves, with a rate of attenuation that depends upon M . In fact
the energy of the wave E ∝ A2 is damped exponentially. The time for a wave to
damp away completely is therefore much less than the timescale for the next scale
to enter the horizon. The upshot of this is that fluctuations on all scales less than
the Silk mass are completely obliterated by photon diffusion almost immediately.
No structure will therefore be formed on a mass scale less than this.
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11.7 Radiation Drag

We now turn our attention to physical processes which are important for isother-
mal rather than adiabatic fluctuations. We have already mentioned that isother-
mal perturbations on a scale M > M(i)J are frozen-in because of a kind of viscous
friction force acting on particles trying to move through a smooth radiation back-
ground. This force is essentially due to radiation drag. We can show schematically
that this freezing-in effect is relevant if the viscous forces on the perturbation Fv
per unit mass dominate the self-gravitational force Fg per unit mass. This condi-
tion is that

Fv
m

� v
τeγ

� λ
tτeγ

>
Fg
m

� Gρmλ � λ
t2
, (11.7.1)

where we have used the fact that ρm � (Gt2)−1, and we are now interested in the
period defined by zeq � z� Ω−1. The inequality (11.7.1) holds for t > τeγ , which
is true before recombination. Now let us treat this phenomenon in a more precise
way. If a perturbation in the ionised component (plasma) moves with a velocity
v  c relative to an unperturbed radiation background, any electron encounters
a force opposing its motion that has magnitude

fv � 4
3σTρrc

2v
c
= 4

3σTσT
4v
c
. (11.7.2)

This applies also to electron–proton pairs because for z > zrec the protons are
always strictly coupled to the motion of the electrons. In fact, because of the
Doppler effect, an electron moving through the radiation background experiences
a radiation temperature which varies with the angle ϑ between its velocity and the
line of sight:

T(ϑ) = T
[
1−

(
v
c

)2]1/2(
1− v

c
cosϑ

)−1
� T

(
1+ v

c
cosϑ

)
, (11.7.3)

which corresponds to an energy flux in the solid angle dΩ of

dΦ = i(ϑ)dΩ = 1
4π
ρr(ϑ)c3 dΩ = 1

4π
σT 4(ϑ)c dΩ, (11.7.4)

and a momentum flux in the direction of the velocity of

dPϑ = 1
c
cosϑdΦ � 1

4π
σT 4

(
1+ 4

v
c
cosϑ

)
cosϑdΩ. (11.7.5)

The momentum acquired by an electron per unit time, which is caused by the
anisotropic radiation field experienced by it, is therefore

fv = σT
∫
Ω
dPϑ = −4

3σTσT
4v
c
= −mpv

τeγ
; (11.7.6)

since the Thomson cross-section of a proton is a factor (mp/me)2 smaller than
that of an electron, the force suffered by the protons is negligible. Equation (11.7.6)
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is a definition, in fact, of the characteristic time τeγ for the transfer of momentum
between proton–electron pairs and photons which we have encountered already
in Section 9.2.
Taking account of this frictional force fv, the equation which governs the gravi-

tational instability of isothermal perturbations, derived according to the methods
laid out in Section 11.2, yields

δ̈m +
(
2
ȧ
a
+ 1
τeγ

)
δ̇m + (v(i)s

2
k2 − 4πGρm)δm = 0. (11.7.7)

For M > M(i)J and zeq > z � zrec, Equation (11.7.7) becomes

δ̈m +
(
4
3t

+ A
t8/3

)
δ̇m − 2

3
δm
t2

� 0, (11.7.8)

where the constant A is given by

A � 4
3
σTρ0rc
mp

t8/30c (Ωh
2)−4/3; (11.7.9)

the second term in parentheses in (11.7.8) dominates the first if τeγ < t, i.e. before
decoupling. In this period, an approximate solution to (11.7.9) is

δm ∝ exp
2t5/3

5A
� exp[105(Ωh2)1/2(1+ z)−5/2] � const. : (11.7.10)

the perturbation remains practically constant before recombination.
As a final remark in this section, we should make it clear that this freezing-

in of perturbations due to radiation drag is not the same as the Meszaros effect
discussed in Section 10.11, which is a purely kinematic effect and does not require
any collisional interaction between matter and radiation.

11.8 A Two-Fluid Model

In the previous sections of this chapter we have treated the primordial plasma
as a single, imperfect fluid of matter and radiation. This model is good enough
for τγe  τH � t and for λ � cτγe = lγ ; all this is true at times well before
recombination and decoupling. A better treatment can be adopted for the period
running up to recombination by considering thematter and radiation components
as two fluids interacting with each other on characteristic timescales τeγ and τγe.
We shall see, however, that even this method has its limitations, which we discuss
at the end of this section.
Let us indicate the temporal parts of the perturbations to the density and veloc-

ity of the matter and radiation components by δm, δr, Vm and Vr, respectively; the
spatial dependence of the perturbations is assumed to be of the form exp(ik ·r),
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as previously. We thus find for longitudinal perturbations in the matter compo-
nent

δ̇m + ikVm = 0, (11.8.1a)

V̇m + ȧ
a
Vm + Vm − Vr

τeγ
+ ikv2smδm − i

k
4πG(ρmδm + 2ρrδr) = 0, (11.8.1b)

where the terms involving τeγ take account of the interaction between matter and
radiation, and vsm coincides with v(i)s . For the radiation component we find, using
results from the previous chapter,

δ̇r + 4
3 ikVr = 0, (11.8.2a)

V̇r + ȧaVr +
Vr − Vm
τeγ

+ ik34v
2
srδr −

i
k
4πG(ρmδm + 2ρrδr) = 0, (11.8.2b)

where the term including τγe takes into account the interaction between mat-
ter and radiation (the factor 4

3 is due to pressure), and vsr = c/
√
3. From Equa-

tions (11.8.1) and (11.8.2) we obtain, respectively,

δ̈m +
(
2ȧ
a

+ 1
τeγ

)
δ̇m − 3δ̇r

4τeγ
+
[
v2smk2 − 4πGρm

(
1+ 2δρr

δρm

)]
δm = 0, (11.8.3a)

δ̈r +
(
2ȧ
a

+ 1
τγe

)
δ̇r − 4δ̇m

3τγe
+
[
v2srk2 − 32

3 πGρr
(
1+ 2δρm

δρr

)]
δr = 0. (11.8.3b)

One can solve the system (11.8.3) by putting

δm ∝ δr ∝ exp(iωt), (11.8.4)

where the frequency ω is in general complex and time dependent. One makes
the hypothesis at the outset that τω ≡ ω/ω̇ > t � τH = a/ȧ, so that δ̇m(r) �
ωδm(r). Afterwards one must discard the solutions with τω � τH: one finds that,
on the scales of interest (i.e. M � M(a)D ), this happens soon after recombination.
Putting the result (11.8.4) in (11.8.3) in light of this hypothesis yields a somewhat
cumbersome dispersion relation in the form

ω4 + c3ω3 + c2ω2 + c1ω+ c = 0, (11.8.5)

in which

c3 = i
(
4
ȧ
a
+ 1
τeγ

+ 1
τγe

)
, (11.8.6a)

c2 = −
[
v2sr(k2 − k2Jr)+ v2sm(k2 − k2Jm)+ 2

ȧ
a

(
2
ȧ
a
+ 1
τeγ

+ 1
τγe

)]
ω2, (11.8.6b)

c1 = −i
[
v2sr(k2 − k2Jr)

(
2
ȧ
a
+ 1
τeγ

)

+ v2sm(k2 − k2Jm)
(
2
ȧ
a
+ 1
τγe

)
+
(v2srk2Jr
τγe

+ v
2
smk

2
Jm

τeγ

)]
(11.8.6 c)
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and

c0 = (vsrvsmk)2(k2 − k2Jr − k2Jm), (11.8.6d)

where kJm and kJr are the wavenumbers appropriate to the wavelengths given by
equations (10.6.15) and (10.9.7). The dispersion relation is of fourth order in ω.
For a given k there exist four solutions ωi(k), with i = 1,2,3,4, and there are
also four perturbation modes. Next one puts an expression of the form (11.8.4)
in the equations for Vm and Vr, (11.8.1b) and (11.8.2b), with the same restriction
on τω. Then substituting in these four equations the solutionsωi(k) one obtains
the four perturbation modes:

δm(r),i = Dm(r)[k,ωi(k)] exp i[k · r +ωi(k)t], (11.8.7a)

vm(r),i = Vm(r)[k,ωi(k)] exp i[k · r −ωi(k)t]. (11.8.7b)

The analytical study of the acoustic modes described by the Equations (11.8.7)
is very complicated, except in special cases where one can simplify the disper-
sion relation to transform it into a cubic equation or, most usefully, a quadratic
equation. In general the ith root of (11.8.5) is complex:

ωi(k) = Reωi(k)+ i Imωi(k). (11.8.8)

One has wavelike propagation when Reωi(k) ≠ 0; in this case one can easily see
thatωj(k) = −ω∗

i (k) is also a solution: these two solutions represent waves prop-
agating in opposite sense to each other, with phase velocity vs(k) = |Reωi(k)|/k
and amplitude which decreases with time when Imωi(k) < 0; the characteristic
time for the wave to decay is given by τi = | Imωi(k)|−1.
One has gravitational instability when Reωi(k) = 0. This instability can be of

either increasing or decreasing type according to whether Imωi(k) is greater than
or less than zero, and the characteristic time for the evolution of the instability
is given by τi = | Imωi(k)|−1.
In general, before decoupling there are two modes of approximately adiabatic

nature, in the sense that δr/δm � 4
3 . These modes are unstable for M > M(a)J , so

that one increases and the other decreases; forM < M(a)J they evolve like damped
acoustic waves with the sound speed vs � v(a)s . A third mode, again of approxi-
mately adiabatic type, also exists but is non-propagating and always damped. The
fourth and final mode is approximately isothermal (in the sense that |δr|  |δm|),
so that for M > M(i)J it is an unstable growing mode, but with a characteristic
growth time τ > τH, so it is effectively frozen-in. During decoupling, the last
two of these modes gradually transform themselves into two isothermal modes
which oscillate like waves for M < M(i)J with a sound speed vs � v(i)s , and are
unstable (one growing and the other decaying) for M > M(i)J . The first two modes
become purely radiative, i.e. δm � 0, which are unstable for wavelengths greater
than the appropriate Jeans length for radiation λ(r)J and which oscillate like waves
propagating at a speed c/

√
3 practically without damping for λ < λ(r)J . These last

two modes are actually spurious, since in reality the radiation after decoupling
behaves like a collisionless fluid which cannot be described by an equation of the
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form (11.8.2). A more exact treatment of the radiation shows that, for λ > λ(r)J and
after decoupling, there is a rapid damping of these purely radiative perturbations
due to the free streaming of photons whose mean free path is lγ � λ.
The analysis of the two-fluid model yields qualitatively similar results to those

already noted for z < zrec. One novel outcome of this treatment is that, in gen-
eral, the four modes correspond neither to purely adiabatic nor purely isothermal
modes. A generic perturbation must be thought of as a combination of four per-
turbations, each one in the form of one of these four fundamental modes. Given
that each mode evolves differently, the nature of the perturbation must change
with time; one can, for example, begin with a perturbation of pure adiabatic type
which, in the course of its evolution, assumes a character closer to a mode of
isothermal type, and vice versa. One can attribute this phenomenon to the con-
tinuous exchange of energy between the various modes.
The two-fluid model furnishes an estimate ofMD(zrec) in a different way to that

we obtained previously. Let us define MD(zrec) to be the mass scale correspond-
ing to a wavenumber k such that, for the approximately adiabatic modes with
M < M(a)J , we have | Imω(k)|trec � 1. In this way, one finds a value of MD(zrec)
which is a little larger than that we found previously.
Nowwe turn to the limitations of the two-fluid approach to thematter–radiation

plasma. There are three main problems. First, the Equations (11.8.1) and (11.8.2)
do not take into account all necessary relativistic corrections. One cannot trust the
results obtained with these equations on scales comparable with, or greater than,
the scale of the cosmological horizon. Secondly, the description of the radiation
as a fluid is satisfactory on length scales λ� cτγe and for epochs during which
τγe(τeγ) τH. On the scales of interest,M � M(a)J (zrec), these conditions are true
only for z� zrec. For later times, or for smaller scales, it is necessary to adopt
an approach which is completely kinetic; we shall describe this kind of approach
in Section 12.10. The last major problem we should mention, and which we have
mentioned before, is that the approximations used to derive the dispersion rela-
tion (11.8.5) from the system of Equations (11.8.3) are only acceptable for z > zrec.
The numerical solution of the system of fully relativistic equations describing

the matter and radiation perturbations (in a kinetic approach), and the pertur-
bations in the spatial geometry (i.e. metric perturbations) is more complex still.
Such computations enable one to calculate with great accuracy, given for generic
initial conditions at the entry of a baryonic mass scale in the cosmological hori-
zon, the detailed behaviour of δm(M), as well as the perturbations to the radiation
component and hence the associated fluctuations in the cosmic microwave back-
ground on scales of interest. We shall comment upon this latter topic in the next
section.

11.9 The Kinetic Approach

As we have already mentioned, the exact relativistic treatment of the evolution of
cosmological perturbations is very complicated. One must keep track not only of
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perturbations to both the matter and radiation but also of fluctuations in the met-
ric. The Robertson–Walker metric describing the unperturbed background must
be replaced by a metric whose components g′ik differ by infinitesimal quantities
from the original gik: the deviations δgik are connected with the perturbations
to the matter and radiation by the Einstein equations. There is also the problem
referred to in Section 10.12 concerning the choice of gauge. This is a subtle prob-
lemwhich we shall not describe in detail at themoment, although we will return to
it briefly in Chapter 17 where we discuss the cosmic microwave background. The
simplest approach is to adopt a synchronous gauge characterised by the metric

ds2 = (c dt)2 − a2[γαβ − hαβ(x, t)]dxα dxβ, (11.9.1)

where |hαβ|  1. The treatment is considerably simplified if the unperturbed
metric is flat so that γαβ = δαβ, where δαβ is the Kronecker symbol: δαβ = 1
for α = β, δαβ = 0 for α ≠ β. This is also the case in an approximate sense if
the Universe is not flat, but one is looking at scales much less than the curvature
radius or at very early times.
The time evolution of the trace h of the tensor hαβ is related to the evolution

of matter and radiation perturbations

ḧ+ 2
ȧ
a
ḣ = 8πG(ρmδm + 2ρrδr). (11.9.2)

The equations that describe the evolution of the time-dependent parts δm and Vm
of the perturbations in the density and velocity of the matter are

δ̇m + ikVm = 1
2 ḣ, (11.9.3a)

V̇m + ȧ
a
Vm + Vm − Vr

τeγ
= 0; (11.9.3b)

the perturbation in the velocity of the radiation Vr will be defined a little later.
As far as the radiation perturbations are concerned, one can demonstrate that

their evolution is described by a single equation involving the brightness function
δ(r)(x, t), whose Fourier transform can be written

δr(k, t) = 1
4π

∫
δ(r)k (ϑ,ϕ, t)dΩ : (11.9.4)

the quantity δ(r)k at any point involves contributions from photons with momenta
directions specified by the spherical polar angles ϑ and ϕ. The differential equa-
tion which describes the evolution of δ(r)k , which was first derived from the Liou-
ville equation by Peebles and Yu (1970), is

δ̇(r)k + ikc cosϑδ(r)k + 1
τγe

(
δr + 4

Vm
c

cosϑ − δ(r)k
)
= 2cos2 ϑḣ, (11.9.5)
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where ϑ is the angle between the photonmomentum and the wave vector k, which
we assume to define the polar axis of a local coordinate system. Given the rota-
tional symmetry, one can expand δ(r)k in angular moments σl defined with respect
to the Legendre polynomials

δ(r)k =
∑
l
(2l+ 1)Pl(cosϑ)σl(k, t). (11.9.6)

The perturbation δr coincides with themomentσ0, while the velocity perturbation
Vr which appears in (11.9.3b) is given by 1

4σ1.
It is comparatively straightforward to show that the evolution of the brightness

function is governed by a hierarchy of equations for the moments σl:

σ̇0 + ikσ1 = 2
3 ḣ (l = 0), (11.9.7a)

σ̇1 + ik(23σ2 + 1
3σ0) =

4
3
Vm − Vr
τγe

(l = 1), (11.9.7b)

σ̇2 + ik(35σ3 + 2
5σ1) = 4

15 ḣ−
3σ2
4τγe

(l = 2), (11.9.7 c)

σ̇l + ik
(
l+ 1
2l+ 1

σl+1 + l
2l+ 1

σl−1
)
= − σl

τγe
(l � 3). (11.9.7d)

One can verify that the two-fluid approximation practically coincides with the sys-
tem of Equations (11.9.2)–(11.9.3b) and (11.9.7) if one puts σ3 = 0 and neglects σ̇2
in Equation (11.9.7 c), thus truncating the hierarchy. This approximation is good
in the epoch during which τγe  τH, which is in practice any time prior to recom-
bination, and on large scales, such that λ � cτγe. In the general situation, both
during and after recombination, the system can be solved only by truncating the
hierarchy at some suitably high value of l; the number of l-modes one has to take
grows steadily as decoupling and recombination proceed. A couple of examples
of a full numerical solution of the evolution of perturbations in the matter δm
and radiation δr components in an adiabatic scenario are shown in Figures 11.1
and 11.2. Themass scale in both these calculations is of order 1015M�. Notice how
thematter and radiation perturbations oscillate together in both calculations until
recombination, whereafter the radiation perturbation stays roughly constant and
the matter perturbation becomes unstable and grows until the present epoch. Fig-
ure 11.1 shows a model with Ω = 1 so that the growth after recombination is a
pure power law, while Figure 11.2 has Ω = 0.1, so that the effect of the growth
factor (Section 11.4) in flattening out the behaviour of the perturbations is clear.
In the opposite limit to that of the validity of the two-fluid approach, one has
τγe � τH, which is much later than recombination or for small scales such that
λ cτγe. In such a case we have

δ̇(r)k + ikc cosϑδ(r)k = 2cos2 ϑḣ, (11.9.8)
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Figure 11.1 Evolution of perturbations, corresponding to a mass scale 1015M�, in the
baryons δm and photons δr in a Universe with Ω = 1.
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Figure 11.2 Evolution of perturbations, corresponding to a mass scale 1015M�, in the
baryons δm and photons δr in a Universe with Ω = 0.1.

which is called the equation of free streaming. With appropriate approximations,
the Equation (11.9.8) can be solved directly.
The value of the brightness function δ(r) at time t0 is connected with the fluctu-

ations observed today in the temperature of the cosmic microwave background,
but in the latest models of structure formation this method of calculating it is
not adequate. In any case our aim in this chapter was to explain the basic physics
behind baryonic fluctuations, without trying to create a model we can compare in
detail with observations. We shall explain themore complete theory in Chapter 17,
together with the observational developments.
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11.10 Summary

We have chosen to investigate the behaviour of density perturbations in a baryon-
radiation universe in some detail mainly for pedagogical reasons, that is to illus-
trate the important physics and display the required machinery. In fact, it is
not thought possible that structure in the Universe grew in such a scenario. We
shall explain why this is so and make some comments about the development of
baryon-only models during the 1970s in Chapter 15.
We end by summarising the most important consequences for structure for-

mation of the physics we have discussed in this chapter. First is the effect of the
evolution of the characteristic mass scales M(a)J , M(i)J and M(a)D . The behaviour of
an adiabatic perturbation depends upon its characteristic mass scale. For per-
turbations on scales M > M(a)J (zeq) � 4 × 1015(Ωh2)−2M�, i.e. 1015–1018M� for
acceptable values of the parameter Ωh2, we have a wavelength greater than the
Jeans length either before decoupling or after, when the Jeans mass drops to
MJ � 105(Ωh2)−1/2M�. Such scales therefore experience uninterrupted growth
(we shall neglect the decaying modes in this study). The growth law is

δm � 3
4δr ∝ t ∝ (1+ z)−2 (11.10.1)

before equivalence, and

δm � 3
4δr ∝ t2/3 ∝ (1+ z)−1 (11.10.2)

in the period, if it exists, between equivalence and recombination. After decou-
pling, the radiation must be treated like a ‘gas’ of collisionless particles and the
evolution of its perturbations must be handled in a more sophisticated manner
than the classical gravitational instability treatment. We described this approach
briefly in Section 11.10. As far as δm is concerned, the growth law is still given by
Equation (11.10.2) for Ω = 1 and also forΩz� 1 ifΩ < 1. More precise formulae
are given in Section 11.4.
In the case of perturbations with mass in the interval

M(a)J (zeq) > M > M
(a)
D (zrec) � 1012–1014M�, (11.10.3)

for acceptable values of Ωh2, we have the following evolutionary sequence. In
the period before their entry into the cosmological horizon defined by zH(M),
the perturbations evolve according to Equation (11.10.1); in the period between
zH(M) and zrec they oscillate like acoustic waves with a sound speed v

(a)
s and with

constant amplitude for z > zeq and amplitude decreasing as t−1/6 between equiva-
lence and recombination; after decoupling they become unstable again and evolve
like masses with M > M(a)J . Perturbations with masses M < M(a)D (zrec) evolve as
before until the time tD(M) at which M = M(a)D . After tD(M) these fluctuations
become rapidly dissipated. The bottom line is that only the perturbations with
M > MD(zrec) can survive from the plasma epoch until the period after recombi-
nation. It is interesting to note that this characteristic scale is similar to that of a
rich cluster of galaxies.
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As we have seen, isothermal perturbations with

M > M(i)J (zrec) � 5× 104(Ωh2)−1/2M� (11.10.4)

are frozen-in until the epoch defined by zi =min(zeq, zrec). After this time, they
are unstable and can grow according to the same law that applies to adiabatic
perturbations at late times. We shall not worry about the evolution of pertur-
bations on scales less than M(i)J (zrec), because these have no real cosmological
relevance. It is interesting to note that M(i)J (zrec) is of the same order as the mass
of a globular cluster.

Bibliographical Notes on Chapter 11

Historically important papers relevant to this chapter are Peebles and Yu (1970),
Wilson and Silk (1981) andWilson (1983). An alternative formulation of the kinetic
approach is given by Efstathiou (1990).

Problems

1. What is the energy stored in a primordial acoustic wave? When these waves are
dissipated by Silk damping, where does this energy go?

2. Derive the dispersion relation (11.8.5).

3. Derive the Equations (11.9.7) using the definitions given in Section 11.9.
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Non-baryonic
Matter

12.1 Introduction

We shall now extend the analyses of the previous two chapters to study the evolu-
tion of perturbations in models of the Universe dominated by dark matter which
is not in the form of baryons. As we saw in Section 4.4, dynamical considerations
suggest that the value of Ω at the present epoch is around Ωdyn � 0.2 and may
well be higher. Given that modern observations of the light-element abundances
require Ωbh2 � 0.02 to be compatible with cosmological nucleosynthesis calcula-
tions, at least part of this mass must be in the form of non-baryonic particles (or
perhaps primordial black holes which formed before nucleosynthesis and there-
fore did not participate in it). As we have seen, most examples of the inflationary
universe predict flat spatial sections which, in the absence of a cosmological con-
stant, implies Ω very close to unity at the present time. If this is true, then the
Universe must be dominated by non-baryonic material to such an extent that the
baryons constitute only a fraction of a percent of the total amount of matter.
One of the problems in these models is that we do not know enough about

high-energy particle physics to know for sure which kinds of particles can make
up the dark matter, nor even what mass many of the predicted particles might be
expected to have. Our approachmust therefore be to keep an openmind about the
particle physics, but to place constraints where appropriate using astrophysical
considerations.
We begin by running briefly through the physics of particle production in the

early Universe, and then go on to describe the effect of different kinds of particles
on the evolution of perturbations. Theories of galaxy formation based on the
properties of different kinds of dark matter are then discussed in a qualitative
way.
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12.2 The Boltzmann Equation for Cosmic Relics

If the Universe is indeed dominated by non-baryonic matter, it is obviously impor-
tant to figure out the present density of various types of candidate particle
expected to be produced in the early stages of the Big Bang. In general, we shall
use the suffix X to denote some generic particle species produced in the early
Universe; we call such particles cosmic relics. We know that relics with a predicted
present mass density of ΩX > 1 are excluded by observations while those with
ΩX < 0.1 at the present time, though possible, would not contribute enough of
the matter density to be relevant for structure formation.
We distinguish at the outset between two types of cosmic relics: thermal and

non-thermal. Thermal relics are held in thermal equilibrium with the other com-
ponents of the Universe until they decouple; a good example of this type of relic is
the massless neutrino, although this is of course not a candidate for the gravitat-
ing dark matter. One can subdivide this class into hot and cold relics. The former
are relativistic when they decouple, and the latter are non-relativistic. Non-thermal
relics are not produced in thermal equilibriumwith the rest of the Universe. Exam-
ples of this type would be monopoles, axions and cosmic strings. The case of non-
thermal relics is much more complicated than the thermal case, and no general
prescription exists for calculating their present abundance. We shall concentrate
in this chapter on thermal relics, which seem to be based on better-established
physics, and for which a general treatment is possible. In practice, it turns out in
fact that this approach is also quite accurate for particles like the axion anyway.
The time evolution of the number density nX of some type of particle species

X is generally described by the Boltzmann equation:

dnX
dt

+ 3
ȧ
a
nX + 〈σAv〉n2X −ψ = 0, (12.2.1)

where the term in ȧ/a takes account of the expansion of the Universe, 〈σAv〉n2X
is the rate of collisional annihilation (σA is the cross-section for annihilation reac-
tions, and v is the mean particle velocity); ψ denotes the rate of creation of par-
ticle pairs. If the creation and annihilation processes are negligible, one has the
expected solution: nXeq ∝ a−3. This solution also holds if the creation and anni-
hilation terms are non-zero, but equal to each other, i.e. if the system is in equi-
librium: ψ = n2Xeq〈σAv〉. Thus, Equation (12.2.1) can be written in the form

dnX
dt

+ 3
ȧ
a
nX + 〈σAv〉(n2X −n2Xeq) = 0 (12.2.2)

or, introducing the comoving density

nc = n
(
a
a0

)3
, (12.2.3)

in the form

a
nc,eq

dnc
da

= −〈σAv〉neq
ȧ/a

[(
nc
nc,eq

)2
− 1

]
= − τH

τcoll

[(
nc
nc,eq

)2
− 1

]
, (12.2.4)
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where τcoll = 1/〈σAv〉neq is the mean time between collisions and τH = a/ȧ is
the characteristic time for the expansion of the Universe; we have dropped the
subscript X for clarity. Equation (12.2.4) has the approximate solution

nc � nc,eq (τcoll  τH), (12.2.5a)
nc � const. � nc(td) (τcoll � τH), (12.2.5b)

where td is themoment of ‘freezing out’ of the creation and annihilation reactions,
defined by

τcoll(td) � τH(td). (12.2.6)

More exact solutions to Equation (12.2.4) behave in a qualitatively similar way to
this approximation.

12.3 Hot Thermal Relics

As we have explained, hot thermal relics are those that decouple while they are
still relativistic. Let us assume that the particle species X becomes non-relativistic
at some time tnX , such that

AkBT(tnX) �mXc2 (12.3.1)

(A � 3.1 or 2.7 is a statistical-mechanical factor which takes these two values
according to whether X is a fermionfermions or a boson). For simplicity we take
A = 3 to get rough estimates. Hot relics are thus those for which tnX > tdX , where
tdX is defined by Equation (12.2.6).
Let us denote bygX the statistical weight of the particleX and byg∗X the effective

number of degrees of freedom of the Universe at tdX . Following the same kind of
reasoning as in Chapter 8, based on the conservation of entropy per unit comoving
volume, we have

g∗XT
3
0X = 2T 30r + 7

8 × 2×NνT 30ν = g∗0 T 30r, (12.3.2)

where T0X is the present value of the effective temperature defined by the mean
particle momentum via

p̄X � 3
kBTX
c
, (12.3.3)

T0r is the present temperature of the photon background and T0ν = ( 4
11)

1/3T0r
takes account of the Nν neutrino families; g∗0 � 3.9 for Nν = 3. We thus obtain
from (12.3.2)

T0X =
(g∗0
g∗X

)1/3
T0r. (12.3.4)

This equation also applies to neutrinos if one puts

g∗ν = 2+ 7
8 × 2×Nν + 7

8 × 2× 2 (12.3.5)
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(photons, neutrinos and electrons all contribute to g∗ν ). In this case we obtain the
well-known relation

T0ν = ( 4
11)

1/3T0r = 0.7T0r. (12.3.6)

The present number-density of X particles is

n0X � 0.5BgX
(
T0X
T0r

)3
n0r � 0.5BgX

g∗0
g∗X
n0r, (12.3.7)

where B = 3
4 or 1 according to whether the particle X is a fermion or a boson. The

density parameter corresponding to these particles is then just

ΩX = mXn0X
ρ0c

� 2BgX
g∗0
g∗X

mX

102 eVh2
. (12.3.8)

Equations (12.3.7) and (12.3.8) are to be compared with Equations (8.5.5) and
(8.5.10). For example, consider hypothetical particles with mass mX � 1 KeV,
which decouple at T � 102–103 MeV when g∗X � 102; these have ΩX � 1.
Let us now apply Equation (12.3.8) to an example: the case of a single massive

neutrino species with mν � 1 MeV, which decouples at a temperature of a few
MeV when g∗X = 10.75 (taking account of photons, electrons and three types of
massless neutrinos). The condition that the cosmic density of such relics should
not be much greater than the critical density requires thatmν < 90 eV: this bound
was obtained by Cowsik and McClelland (1972). If, instead, all the neutrino types
have mass around 10 eV, then their density will be given by the equation already
presented in Section 8.5:

Ωνh2 � 0.1Nν
〈mν〉
10 eV

. (12.3.9)

Equations (12.3.1) and (12.3.4) can be used to calculate the redshift corresponding
to tnX :

znX � 1.43× 105
(g∗X
g∗0

)1/3 mX

102 eV
. (12.3.10)

The moment of equivalence, teq, between the relativistic components (photons,
massless neutrinos) and the non-relativistic particles (X after tnX and baryons) is
given by

zeq = ΩX

K0Ωr
� 2.3× 104

ΩXh2

K0
, (12.3.11)

if one assumes that ΩX � Ωb, and neglects the contribution of baryons to Ω. In
Equation (12.3.11) we have K0 � 1+0.227Nν taking account of the massless neu-
trinos. It is clear that we cannot have znX < zeq; in the case where the collisionless
component dominates at tnX one assumes znX = zeq.
Because ΩX is proportional tomX by Equation (12.3.8), one can write

znX � 7× 104
1
gX

(g∗X
g∗0

)4/3
ΩXh2 (12.3.12a)
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and

zeq � 5× 104gX
(g∗0
g∗X

)
mX

102 eV
, (12.3.12b)

which complement Equations (12.3.10) and (12.3.11). In particular, if the X parti-
cles are massive neutrinos, we can obtain

znν � 2× 104
〈mν〉
10 eV

� 2× 105

Nν
Ωνh2, (12.3.13a)

and

zeq � 4× 103Nν
〈mν〉
10 eV

� 4× 104Ωνh2 < znν ; (12.3.13b)

〈mν〉 is the average neutrino mass.

12.4 Cold Thermal Relics

Calculating the density of cold thermal relics is much more complicated than for
hot relics. At the moment of their decoupling the number density of particles in
this case is given by a Boltzmann distribution:

n(tdX) = gX 1
�3

(
mXkBTdX

2π

)3/2
exp

(
−mXc2

kBTdX

)
. (12.4.1a)

The present density of cold relics is therefore

n0X = n(tdX)
[
a(tdX)
a0

]3
= n(tdX)g

∗
0

g∗X

(
T0r
TdX

)3
. (12.4.1b)

The problem is to find TdX , that is to say the temperature at which Equa-
tion (12.2.6) is true. The characteristic time for the expansion of the Universe
at tdX is

τH(tdX) � 0.3
�TP

g∗X1/2kBT
2
dX
, (12.4.2)

which is the same as appeared in Equation (7.1.6), while the characteristic time
for collisional annihilations is given by

τcoll(tdX) =
[
n(tdX)σ0

(
kBTdX
mXc2

)q]−1
, (12.4.3)

where we have made the assumption that

〈σAv〉 = σ0
(
kBT
mXc2

)q
: (12.4.4)
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q = 0 or 1 for most kinds of reaction. Introducing the variable x =mXc2/kBT , the
condition τcoll(x) = τH(x) is true when x = xdX =mXc2/kBTdX � 1. The value of
xdX must be found by an approximate solution of Equation (12.2.6), which reads

xq−1/2dX expxdX = 0.038
gX

(g∗X)1/2
c
�2
mPmXσ0 = C, (12.4.5)

wheremP is the Planck mass. One therefore obtains

xdX � lnC − (q − 1/2) ln(lnC). (12.4.6)

The present density of relic particles is then

ρ0X � 10g∗−1/2X
(kBT0r)3

�c4σ0mP
xn+1dX . (12.4.7)

As an application of Equation (12.4.4), one can consider the case of a heavy neu-
trino of mass mν � 1 MeV. If the neutrino is a Dirac particle (i.e. if the par-
ticle and its antiparticle are not equivalent), then the cross-section in the non-
relativistic limit varies as v−1 corresponding to q = 0 in (12.4.4), for which
σ0 = const. � 0.8g2wk(m2

νc/�4) (gwk is the weak interaction coupling constant).
Putting gν = 2 and g∗ν � 60 one finds that xdν � 15, corresponding to a temper-
ature Tdν � 70 (mν/GeV) MeV. Placing this value of xdν in Equation (12.4.7), the
condition thatΩνh2 < 1 implies thatmν > 1 GeV: this limit was found by Lee and
Weinberg (1977), amongst others. If, on the other hand, the neutrino is a Majorana
particle (i.e. if the particle and its antiparticle are equivalent), the annihilation rate
〈σAv〉 has terms in x−q with q = 0 and 1, thus complicating matters consider-
ably. Nevertheless, the limit on mν we found above does not change. In fact we
findmν > 5 GeV. If the neutrino has massmν � 100 GeV, the energy scale of the
electroweak phase transition, the cross-section is of the form σA ∝ T−2 and all
the previous calculations must be modified.
The relations (12.3.10) and (12.3.11) which supply znX and zeq remain substan-

tially unchanged, except that in the expression for znX one should replace g∗X by
g∗nX , the value of g∗ at tnX .

12.5 The Jeans Mass

In this section we shall study the evolution of the Jeans mass MJX and the free-
streaming mass MfX for a fluid of collisionless particles. As we have explained in
Section 10.3 and Chapter 11, we need first to determine the behaviour of the mean
particle velocity vX in the various relevant cosmological epochs. These epochs are
the two intervals t < tnX and t > tnX for hot relics; the three intervals t < tnX ,
tnX � t � tdX and t > tdX for cold relics. In the first case (hot relics) we have,
roughly,

vX � c√
3

(z � znX), (12.5.1a)

vX � c√
3

1+ z
1+ znX (z � znX), (12.5.1b)
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while for the cold relics we have instead

vX = c√
3

(z � znX), (12.5.2a)

vX � c√
3

(
1+ z
1+ znX

)1/2
(znX � z � zdX), (12.5.2b)

vX � c√
3

(
1+ zdX
1+ znX

)1/2 1+ z
1+ zdX (z � zdX). (12.5.2 c)

One defines the Jeans mass for the collisionless component to be the quantity

MJX = 1
6πmXnXλ3JX ; (12.5.3)

the Jeans length λJX is given by Equation (10.3.11) where one replaces v∗ by vX
from above:

λJX = vX
(
π
Gρ

)1/2
. (12.5.4)

The total density ρ includes contributions from a relativistic component ρr (pho-
tons and massless neutrinos), the collisionless component ρX and the baryonic
component ρb which, in the first approximation, can be neglected. One can put
ρ � ρr for z > zeq and ρ � ρX for z < zeq.
Now let us consider the case of hot thermal relics. Assuming that znX > zeq we

easily obtain

MJX � 1
6πρ0c

(
c√
3

)3( π
Gρ0r

)3/2
(1+ z)−3ΩX � MJX(znX)

(
1+ z
1+ znX

)−3
(12.5.5)

for z � znX , where

MJX(znX) � 3.5× 1015
(
1+ zeq
1+ znX

)3
(ΩXh2)−2M�; (12.5.6a)

MJX � const. � MJX(znX) = MJX,max (12.5.6b)

for znX � z � zeq; and

MJX � MJX(znX)
(

1+ z
1+ zeq

)3/2
(12.5.7)

for z � zeq. The mass MJX(znX) represents the maximum value of MJX . Its value
depends on the type of collisionless particle. The highest value of this mass is
obtained for particles having znX � zeq, such as neutrinos with a mass around
〈mν〉 � 10 eV. In this case we have

MJν,max � 3.5× 1015(Ωνh2)−2M�, (12.5.8a)

which corresponds to a length scale

λJν,max � 6(Ωνh2)−1 Mpc, (12.5.8b)



258 Non-baryonic Matter

so that, using equation (12.3.9), we have

λJν,max � 60
Nν

( 〈mν〉
10 eV

)−1
. (12.5.8 c)

More accurate expressions from full numerical calculations are given in Chap-
ter 15.
Before znν � zeq the Jeans mass MJν practically coincides with M

(a)
J , the Jeans

mass corresponding to adiabatic perturbations in a plasma of baryons and radia-
tion. As we have seen above, M(a)J grows after zeq and reaches a maximum value
at zrec. In cases in which znX > zeq, the difference between MJX,max and M

(a)
J (zrec)

is large.
Now we turn to cold thermal relics. One can show that

MJX � MJX(znX)
(

1+ z
1+ znX

)−3
, (12.5.9a)

MJX � MJX(znX)
(

1+ z
1+ znX

)−3/2
, (12.5.9b)

MJX � const. � MJX(zdX) = MJX,max, (12.5.9 c)

MJX � MJX(zdX)
(

1+ z
1+ zeq

)3/2
(12.5.9d)

in the four redshift intervals z � znX , znX � z � zdX , zdX � z � zeq and z � zeq,
respectively. The maximum value of the Jeans mass for typical cold-dark-matter
particles is too small to be of interest in cosmology.
As we have already explained, in a collisionless fluid perturbations on scales

less than the Jeans mass do not just oscillate but can be damped by two physical
processes: in the ultrarelativistic regime, when the particle velocities are all of
order v � c, the amplitude of a perturbation decays because particles move with
a large ‘directional’ dispersion from overdense to underdense regions, and vice
versa; in the non-relativistic regime there is also a considerable spread in the par-
ticle velocities which tends to smear out the perturbation. This second damping
mechanism is similar to the Landau damping that occurs in plasma physics, and
is also known as phase mixing. In either case, to order of magnitude, after a time
t perturbations are dissipated on a scale λ � λfX , with

λfX � a(t)
∫ t
0

vX
a(t′)

dt′. (12.5.10)

The scale λfX is called the free-streaming scale. We introduce here the free-
streaming mass:

MfX = 1
6πmXnXλ3fX. (12.5.11)

Let us again turn to the case of hot thermal relics with znX > zeq. In this case we
find

MfX(t) � 0.6MJX. (12.5.12)
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Figure 12.1 Evolution of perturbations on a scale M � 1015M� for the cold component
δX , baryonic component δm and photons δr in a model dominated by CDM (Ω = 1, h =
0.5). This scale enters the horizon after radiation domination, so the stagnation effect is
not seen.

Soon after zeq the curve of MfX intersects the curve for MJX , as can be seen in
Figure 12.1. One can therefore assume that all perturbations in the collisionless
component δX corresponding to masses M < MJX,max will be completely obliter-
ated by free streaming. A more detailed treatment for the neutrinos, using the
kinetic approach described in Chapter 11, shows that

δν � δ0
[
1+

(MJν,max

M

)2/3]−4
, (12.5.13)

where δ0 is the amplitude of perturbations when M = MJν and δν is the ampli-
tude remaining when M again becomes larger than MJν . Perturbations with M <
0.5MJν(znX) are in practice dissipated completely. Analogous considerations lead
one to conclude that for cold thermal relics, the phenomenon of free streaming
erodes all perturbations with masses M < MJX,max.
Non-thermal cosmic relic particles, because they are not in equilibrium with

the other components of the Universe, have a mean velocity vX which is
negligible compared even with that of cold relics. The maximum values of
the Jeans mass and the free-streaming mass are therefore very low. In this
case, perturbations on all the scales of interest can grow uninterrupted by
damping processes. They do, however, suffer stagnation through the Meszaros
effect before zeq. After recombination they can give rise to fluctuations in
the baryonic counterpart on scales of order M � M(i)J (zrec) � 105M� or
larger.

12.6 Implications

Having established the relevant physics, and shown how important mass scales
vary with cosmic epoch, we now briefly discuss the principal implications for
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models of structure formation with collisionless relic particles. Historically, there
have been two important scenarios involving: hot dark matter (HDM) in which
the collisionless dark matter takes the form of a hot thermal relic; and cold dark
matter (CDM) in which the dark matter is either a cold thermal relic, or perhaps
a non-thermal relic such as an axion.

12.6.1 Hot Dark Matter

Recall that hot dark matter corresponds to thermal relics with znX � zeq
and therefore with a maximum value of MJX of order 1014M� or greater. A
typical HDM candidate particle is a neutrino species with mass of the order
of 10 eV. When a perturbation enters the cosmic horizon in a universe dom-
inated by such particles it will have δr � δm � δX . Fluctuations in the
relic component δX with M > MJX(znX) can enjoy a period of uninterrupted
growth (apart from a brief interval of stagnation due to the action of the
Meszaros effect ending at zeq). If the primordial spectrum of perturbations
has an amplitude decreasing with scale, as we shall explain in the next chap-
ter, one will first form structure in the collisionless component on the scale
M � MJX(znX). The first structures to form are called pancakes, as in the adi-
abatic baryon model. In the range of scales between MJX(znX) and M

(a)
J (zrec)

the fluctuations in the matter component undergo oscillations like acoustic
waves until recombination. At zrec, in this range of scales, we therefore have

δr � δm � AX(M)−1δX, (12.6.1)

with AX(M) � 1. The factor AX , of order unity forM � M(a)J (zrec), has a maximum
value

AX,max � znXzrec � zeq
zrec

� 10 (12.6.2)

for the scaleM � MJX(znX). After recombination the perturbations in the baryonic
matter component again become unstable and begin to grow like the perturba-
tions δX . The latter fluctuations, being more than an order of magnitude larger
than δm, dominate the self-gravity of the system so that after recombination the
baryonic material follows the behaviour of the dark matter: δm � δX . This hap-
pens very quickly, as the following argument demonstrates. If there is more than
one matter component, then equation (10.6.14) becomes

δ̈i + 2
ȧ
a
δ̇i + v2s k2δi = 4πG

∑
j
ρjδj, (12.6.3)

where the sum is taken over all the matter components; see also equations
(11.9.3a) and (11.9.3b). This can be derived from a two-fluid model ignoring the
factors of 4

3 and 2 corresponding to radiation pressure and the gravitational effect
of pressure, respectively, and letting τeγ = τγe →∞. In this case the two fluids are
baryons, b, and dark matter, X, and the initial conditions are such that δX � δb at



Implications 261

trec. In an Einstein–de Sitter model Equation (12.6.3) for the baryonic component
can be written

δ̈b + 2
ȧ
a
δ̇b + v2s k2δb = 4πG(ρbδb + ρXδX) � 4πGρXδX. (12.6.4)

This equation is easily solved, since we know that δX ∝ t2/3, by the ansatz δb =
Atp. One thus finds that

δb(M) � δX
1+ [M(i)J (zrec)/M]2/3

∝ t2/3, (12.6.5)

so that the baryonic fluctuations catch up the dark matter virtually instanta-
neously.

12.6.2 Cold Dark Matter

Particles of cold dark matter correspond to cold thermal relics (or non-thermal
relics such as axions), with znX � zeq. For such particles the maximum value of
MJX is quite small compared with scales of cosmological interest. Perturbations
in the collisionless component δX are frozen-in by the Meszaros effect until zeq,
but enjoy uninterrupted growth on scales M > MJX after zeq. In this case, assum-
ing as before that the spectrum of initial fluctuations decreases with mass scale,
as discussed in the next chapter, the first structure to form has a mass of order
M � M(i)J (zrec) � 105M�; the limit here is essentially provided by the pressure
of the baryons after recombination. Although fluctuations are not dissipated in
this model on small scales, the stagnation effect does suppress their growth com-
pared with large scales, so the spectrum of fluctuations is severely modified: see
Chapter 15, where we discuss these effects in detail. More detailed computations,
based on kinetic theory, have shown that in both the CDM and HDM models, the
residual fluctuations in the microwave radiation background are much smaller
than those in the adiabatic baryon picture. This result can be understood from
a qualitative point of view, by simply recognising that fluctuations on the scales
MJX,max < M < M

(a)
J (zrec) are roughly a factor AX smaller in this case than in the

old adiabatic picture. As an example, in Figure 12.1 we show the results of a full
numerical computation of the evolution of the perturbations δX , δm and δr corre-
sponding to a mass scale M � 1015M� for a CDM model with a Hubble parameter
h = 0.5. One can compare this result with the similar computations shown in
the previous chapter for baryonic models. The CDM model in particular produces
rather low fluctuations in the CMB radiation. Until relatively recently, this was
considered an asset, but with the COBE discovery of the radiation it seems to be
a weakness: COBE seems to have detected larger fluctuations than CDM would
predict, as discussed in Chapter 17.
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12.6.3 Summary

By a relatively simple consideration of time and length scales, we have shown in
this chapter how the presence of a significant component of non-baryonicmaterial
alters the growth rate of perturbations under gravitational instability. It has not
been our aim in this chapter to develop complete models of structure formation
based on this idea, but simply to explain the physical origin of the difference with
respect to models with baryons only. The two main points to remember are that

1. models with non-baryonic dark matter typically induce smaller fluctuations
in the radiation background than those with only baryons;

2. structure can survive on scales less than the Silk mass in a cold-dark-
matter universe (because fluctuations in the dark-matter component are not
affected by photon diffusion);

3. structure is destroyed on small scales in a hot-dark-matter universe because
of the free streaming of the non-baryonic component.

In Chapter 15 we will explain how these ingredients manifest themselves in more
complete models of structure formation.

Bibliographic Notes on Chapter 12

The standard manifesto for structure formation within CDM models is Blumen-
thal et al . (1984), while the first detailed numerical computations were by Davis et
al . (1985). This basic model has been developed much further; see, for example,
Frenk et al . (1988). A detailed account of the evolution of CDM perturbations is
given by Liddle and Lyth (1993). Neutrino-dominated universes are discussed by,
for example, White et al . (1983). This general material is covered well by Padman-
abhan (1993) and Peacock (1999). The possibility of directly detecting dark-matter
candidates is discussed, for example, in Klapdor-Kleingrothaus and Zuber (1997).

Problems

1. Derive the approximate solutions (12.2.5a) and (12.2.5b).

2. Derive the approximate solution (12.4.5).

3. Compare the solutions obtained in Questions 1 and 2 with numerical solutions of
Equations (12.2.4) and (12.2.6).
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Cosmological
Perturbations

13.1 Introduction

In the previous chapters we have studied the linear evolution of a perturbation
described as a plane wave with corresponding wave vector k. This representation
is useful because a generic perturbation can be represented as a superposition
of such plane waves (by the Fourier representation theorem) which, while they
are evolving linearly, evolve independently of each other. In general we expect
fluctuations to exist on a variety of mass or length scales and the final structure
forming will depend on the growth of perturbations on different scales relative
to each other. In this chapter we shall therefore look at perturbations in terms of
their spectral composition and explain how the various spectral properties might
arise.
A particularly important problem connected with the primordial spectrum of

perturbations is to understand its origin. In the 1970s the form of the spectrum
was generally assumed in an ad hoc fashion to have the properties which seemed
to be required to explain the origin of structure in either the adiabatic or isother-
mal scenario. A particular spectrum, suggested independently by Peebles and
Yu (1970), Harrison (1970) and Zel’dovich (1972), but now usually known as the
Harrison–Zel’dovich or scale-invariant spectrum, was taken to be the most ‘natu-
ral’ choice for initial fluctuations according to various physical arguments. Fur-
ther motivation for this choice arrived in 1982 in the form of inflationary models,
which, as we shall see in Section 13.6, usually predict a spectrum of the scale-
invariant form. The details of these fluctuations, which are generated by quantum
oscillations of the scalar field driving the inflationary epoch, were first worked out
by Guth and Pi (1982), Hawking (1982) and Starobinsky (1982). This result was very



264 Cosmological Perturbations

important, because it represented the first time that any particular choice of the
spectrum of initial perturbations has been strongly motivated by physics.
As far as the evolution of the perturbation spectra is concerned, it is clear that

the theory must depend on the nature of the particles which dominate the Uni-
verse, baryonic or non-baryonic, hot or cold, and on the nature of the fluctuations
themselves, adiabatic or isothermal, curvature or isocurvature. We shall explain
how these factors alter or ‘modulate’ the primordial spectrum later in this chap-
ter. Because the fluctuations are, in some sense, ‘random’ in origin, we shall also
need to introduce some statistical properties which can be used to describe den-
sity fluctuations, namely the power spectrum, variance, probability distribution
and correlation functions.

13.2 The Perturbation Spectrum

To describe the distribution of matter in the Universe at a given time and its
subsequent evolution one might try to divide it into volumes which initially evolve
independently of each other. Fairly soon, however, this independence would no
longer hold as the gravitational forces between one cell and its neighbours become
strong. It is therefore not a good idea to think of a generic perturbation as a
sum of spatial components. It is a much better idea to think of the perturbation
as a superposition of plane waves which have the advantage that they evolve
independently while the fluctuations are still linear. This effectively means that
one represents the distribution as independent components not in real space, but
in Fourier transform space, or reciprocal space, in terms of the wavevectors of
each component k.
Let us consider a volume Vu, for example a cube of side L� ls, where ls is the

maximum scale at which there is significant structure due to the perturbations; Vu
can be thought of as a ‘fair sample’ of the Universe if this is the case. It is possible
therefore to construct, formally, a ‘realisation’ of the Universe by dividing it into
cells of volume Vu with periodic boundary conditions at the faces of each cube.
This device will be convenient for many applications but should not be taken too
literally. Indeed, one can take the limit Vu →∞ in most cases, as we shall see later.
Let us denote by 〈ρ〉 the mean density in a volume Vu and ρ(x) to be the density

at a point specified by the position vector x with respect to some arbitrary origin.
As usual we define the fluctuation δ(x) = [ρ(x)− 〈ρ〉]/〈ρ〉. In light of the above
comments we take this to be expressible as a Fourier series:

δ(x) =
∑
k
δk exp(ik · x) =

∑
k
δ∗k exp(−ik · x), (13.2.1)

where the assumption of periodic boundary conditions δ(L,y, z) = δ(0, y, z),
etc., requires that the wavevector k has components

kx = nx 2πL , ky = ny 2πL , kz = nz 2πL , (13.2.2)
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with nx , ny and nz integers. The Fourier coefficients δk are complex quantities
given, as it is straightforward to see, by

δk = 1
Vu

∫
Vu
δ(x) exp(−ik · x)dx; (13.2.3)

because of conservation of mass in Vu we have δk=0 = 0; because of the reality of
δ(x) we have δ∗k = δ−k.
If, instead of the volume Vu, we had chosen a different volume V ′

u, the per-
turbation within the new volume would again be represented by a series of the
form (13.2.1), but with different coefficients δk. If one imagines a large number
N of such volumes, i.e. a large number of ‘realisations’ of the Universe, one will
find that δk varies from one to the other in both amplitude and phase. If the
phases are random, not only across the ensemble of realisations, but also from
node to node within each realisation, then the density field has Gaussian statistics
which we shall discuss in detail in Section 13.7. For the moment, however, it suf-
fices to note the following property. Although the mean value of the perturbation
δ(x) ≡ δ across the statistical ensemble is identically zero by definition, its mean
square value, i.e. its variance σ 2, is not. It is straightforward to show that

σ 2 ≡ 〈δ2〉 =
∑
k
〈|δk|2〉 = 1

Vu

∑
k
δ2k, (13.2.4)

where the average is taken over an ensemble of realisations. The quantity δk is
defined by the relation (13.2.4) and its meaning will become clearer later, in Sec-
tion 13.8. One can see from Equation (13.2.4) that 〈|δk|2〉 is the contribution to
the variance due to waves of wavenumber k. If we now take the limit Vu →∞ and
assume that the density field is statistically homogeneous and isotropic, so that
there is no dependence on the direction of k but only on k = |k|, we find

σ 2 = 1
Vu

∑
k
δ2k →

1
2π2

∫∞

0
P(k)k2 dk, (13.2.5)

where we have, for simplicity, put δ2k = P(k) in the limit Vu → ∞. The quantity
P(k) is called the power spectral density function of the field δ or, more loosely,
the power spectrum. The variance does not depend on spatial position but on time,
because the perturbation amplitudes δk evolve. The quantity σ 2 therefore tells
us about the amplitude of perturbations, but does not carry information about
their spatial structure.
As we shall see, it is usual to assume that the perturbation power spectrum

P(k), at least within a certain interval in k, is given by a power law

P(k) = Akn; (13.2.6)

the exponent n is usually called the spectral index. The exponent need not be
constant over the entire range of wave numbers: the convergence of the variance
in (13.2.5) requires that n > −3 for k→ 0 and n < −3 for k→∞.
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Equation (13.2.5) can also be written in the form

σ 2 = 1
2π2

∫∞

0
P(k)k2 dk =

∫ +∞

−∞
∆(k)d lnk, (13.2.7)

where the dimensionless quantity

∆(k) = 1
2π2

P(k)k3 (13.2.8)

represents the contribution to the variance per unit logarithmic interval in k. We
shall find this quantity useful to compare with observations of galaxy clustering
on large scales in Section 16.6. If∆(k) has only one pronouncedmaximum at kmax,
then the variance is given approximately by

σ 2 � ∆(kmax) = 1
2π2

P(kmax)k3max. (13.2.9)

Some other useful properties of the spectrum P(k) are its spectral moments

σ 2
l = 1

2π2

∫∞

0
P(k)k2(l+1) dk, (13.2.10)

where the index l (which is an integer) is the order; the zeroth-order moment is
just the variance σ 2. Typically, such as for power-law spectra, these moments do
not converge and it is necessary to filter the spectrum to get meaningful results;
we discuss this in Section 13.3 and thereafter. Higher-order moments of the (fil-
tered) spectrum contain information about the shape of P(k) just as moments
of a probability distribution contain information about its shape. As we shall see
in Section 14.8, many interesting properties of the fluctuation field δ(x) can be
expressed in terms of the spectral moments or combinations of them such as

γ = σ 2
1

σ2σ0
, R∗ = √

3
σ1
σ2
, (13.2.11)

where γ and R∗ are usually called the spectral parameters.

13.3 The Mass Variance

13.3.1 Mass scales and filtering

The problem with the variance σ 2 is that it contains no information about the
relative contribution to the fluctuations from different k modes. It may also be
formally infinite, if the integral in Equation (13.2.5) does not converge. It is con-
venient therefore to construct a statistical description of the fluctuation field as
a function of some ‘resolution’ scale R. Let 〈M〉 be the mean mass found inside a
spherical volume V of radius R:

〈M〉 = 〈ρ〉V = 4
3π〈ρ〉R3. (13.3.1)
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One defines the mass variance inside the volume V to be the quantity σ 2
M given

by

σ 2
M = 〈(M − 〈M〉)2〉

〈M〉2 = 〈δM2〉
〈M〉2 , (13.3.2)

where the average is made over all spatial volumes V ; σM is the RMS (root mean
square) mass fluctuation. Using the Fourier decomposition of Equation (13.2.1),
Equation (13.3.2) becomes

σ 2
M = 1

V2

〈∫
V

∫
V

∑
k
δk exp(ik · x)

∑
k′
δk′ exp(ik′ · x′)dx dx′



, (13.3.3a)

which can be written

σ 2
M = 1

V2

〈∑
k,k′
δkδ∗k′

∫
V
exp(ik · x)dx

∫
V
exp(−ik′ · x′)dx′



(13.3.3b)

and then as

σ 2
M = 1

V2

〈∑
k,k′
δkδ∗k′ exp[i(k− k′) · x0]× I1 × I2



, (13.3.3 c)

where

I1 =
∫
V
exp[ik · (x − x0)]d(x − x0) (13.3.3d)

and

I2 =
∫
V
exp[−ik′ · (x′ − x0)]d(x′ − x0). (13.3.3 e)

This can then be seen to give

σ 2
M =

∑
k
〈|δk|2〉

[
1
V

∫
V
exp(ik ·y)dy

]2
=
∑
k
〈|δk|2〉I2 = 1

Vu

∑
k
δ2kW

2(kR).

(13.3.3f )
In the above equations x0 is the centre of a sphere of volume V , and a mean is
taken over all such spheres, i.e. over all positionsx0. We have used the relationship

〈exp[i(k− k′) · x0]〉 = δDkk′ , (13.3.4)

where δDkk′ is the Kronecker delta function, which is more usually written δD(k−
k′) and is not to be confused with δk, such that δDkk′ = 0 if k ≠ k′ and δDkk′ = 1, if
k = k′. The function W(kR) in Equation (13.3.3) is called the window function; an
expression for this can be found by developing exp(ik·y) in spherical harmonics,
given the symmetry of the system around the point x0:

exp(ik ·y) =
∑
l,m
jl(kr)il(2l+ 1)P |m|

l (cosϑ) exp(imϕ), (13.3.5)
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where jl are spherical Bessel functions, P |m|
l are the associated Legendre poly-

nomials, and r , ϑ and ϕ are spherical polar coordinates. The integral I in Equa-
tion (13.3.3f ) then becomes

I =
∑
l,m
il(2l+ 1)

∫ 2π
0

exp(imϕ)dϕ
∫ π
0
P |m|
l (cosϑ) sinϑdϑ

∫ R
0
jl(kr)r 2 dr

(13.3.6a)
or, alternatively,

I = 4π
∫ R
0
j0(kr)r 2 dr = 4π

k3
(sinkR − kR coskR) (13.3.6b)

(the integrals over ϑ and ϕ are zero unless m = l = 0); in this way the window
function is just

W(kR) = 3(sinkR − kR coskR)
(kR)3

; (13.3.7)

its behaviour is such that W(x) � 1 for x � 1 and |W(x)| � x−2 for x� 1.
Passing to a continuous distribution of plane waves, i.e. in the limit expressed

by Equation (13.2.5), the mass variance is

σ 2
M = 1

2π2

∫∞

0
P(k)W 2(kR)k2 dk < σ 2, (13.3.8)

which, as it must be, is a function of R and therefore of M .
The significance of the window function is the following: the dominant contri-

bution to σ 2
M is from perturbation components with wavelength λ � k−1 > R,

because those with higher frequencies tend to be averaged out within the window
volume; we have tacitly assumed that the spectrum is falling with decreasing k,
so waves with much larger λ contribute only a small amount. We will return to
this point in Section 14.4, where we discuss effects occurring at the edge of the
window.

13.3.2 Properties of the filtered field

One can think of the result expressed by Equation (13.3.8) also as a special case of
a more general situation. It is often interesting to think of the fluctuation field as
being ‘filtered’ with a low-pass filter. The filtered field, δ(x;Rf), may be obtained
by convolution of the ‘raw’ density field with some function F having a character-
istic scale Rf:

δ(x;Rf) =
∫
δ(x′)F(|x − x′|;Rf)dx′. (13.3.9)

The filter F has the following properties: F = const. � R−3f if |x −x′|  Rf, F � 0
if |x − x′| � Rf,

∫
F(y;Rf)dy = 1. For example, the ‘top-hat’ filter , with a sharp

cut off, is defined by the relation

FTH(|x − x′|;RTH) = 3

4πR3TH
Θ
(
1− |x − x′|

RTH

)
, (13.3.10)



The Mass Variance 269

where Θ is the Heaviside step function (Θ(y) = 0 for y � 0, Θ(y) = 1 for y > 0).
Another commonly used filter is the Gaussian filter :

FG(|x − x′|;RG) = 1

(2πR2G)3/2
exp

(
− |x − x′|2

2R2G

)
. (13.3.11)

The mass contained in a volume of radius RTH is equal to that contained in a
Gaussian ‘ball’, cf. Equation (13.3.16), if RG = 0.64RTH.
Using the concept of the filtered field we can repeat all considerations we made

in Section 14.2 concerning the variance. In place of σ 2 we have the variance of the
field δ(x;Rf)

σ 2(Rf) = 1
2π2

∫∞

0
P(k;Rf)k2 dk = 1

2π2

∫∞

0
P(k)W 2

F (kRf)k
2 dk, (13.3.12)

where WF(kRf) is now the Fourier transform of the filter F . The spectrum of the
filtered field is given by

P(k;Rf) = W 2
F (kRf)P(k). (13.3.13)

In the top-hat case we have

WTH(kRTH) = 3(sinkRTH − kRTH coskRTH)
(kRTH)3

, (13.3.14)

which coincides with (13.3.7) with R = RTH; this result is due to the definition of
the mass in Equation (13.3.1) as the mass contained in a sphere of radius R. The
window function for a Gaussian filter is

WG(kRG) = exp[−1
2(kRG)

2], (13.3.15)

which can be thought of as similar to the mass-in-sphere calculation, but with a
sphere having blurred edges

〈M〉 = 4π〈ρ〉
∫∞

0
exp

(
− r

2

2R2

)
r 2 dr . (13.3.16)

By analogy with this expression for the generic mass M , one can find a mass
variance using a window function of the form (13.3.15). In general, therefore, the
mass variance of a density field δ(x) is given by the relation

σ 2
M = 1

2π2

∫∞

0
P(k)W 2

F (kR)k
2 dk, (13.3.17)

where the expression for the window function depends on whichever filter, or
effective mass, is used.
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13.3.3 Problems with filters

One of the reasons why onemight prefer a Gaussian filter over the apparently sim-
pler top hat is illustrated by applying Equation (13.3.17) to a power-law spectrum
of the form (13.2.6). As we have said, in order for σ 2 to converge, the spectrum
P(k)must have an asymptotic behaviour as k→∞ of the form kn∞ , withn∞ < −3.
For this reason we can only take Equation (13.2.6) to be valid for wavenumbers
smaller than a certain value k∞, after which the spectral index either changes
slope to n∞ or there is a rapid cut-off in P(k). The convergence for small k, how-
ever, requires that n > −3. If one puts Equation (13.2.6) directly into (13.3.17) and
assumes a top-hat filter, so thatW(kR) = 1 for k � 1/R ≡ kM, |W(kR)| � (k/kM)−2
for kM � k � k∞, and P(k) = 0 for k > k∞, one obtains, for the interval−3 < n < 1,

σ 2
M � A

2π2

{
4kn+3M

(1−n)(3+n)
[
1− n+ 3

4

(
kM
k∞

)1−n]}
, (13.3.18a)

which becomes

σ 2
M � 2Akn+3M

π2(1−n)(3+n) ∝ R
−(n+3) : (13.3.18b)

the mass variance σM depends on the spectral index n according to

σM ∝ M−(3+n)/6 ≡ M−α; (13.3.19)

we call the exponent α = 1
6(3+n) the mass index. For values n > 1 one finds,

however, that

σ 2
M � A

2π2

{kn−1∞ k4M
n− 1

[
1− 4

n+ 3

(
kM
k∞

)n−1]}
, (13.3.20a)

which is

σ 2
M � Akn−1∞ k4M

2π2(n− 1)
∝ R−4 ∝ M−4/3, (13.3.20b)

and therefore

σM ∝ M−2/3 : (13.3.21)

themass index does not depend on the original spectral index. The result (13.3.21)
is also obtained if n = 1, apart from a logarithmic term. The reason for this result
is that we have taken for the definition of σM the variance of fluctuations inside
a sphere with sharp edges. This corresponds to an extended window function
in Fourier space. When n � 1 the spectral components which enter the integral
at the edges of the window function become significant contributors to the vari-
ance: σ 2

M defined by Equation (13.3.17) is no longer a useful measure of the mass
fluctuations on a particular scale R, but is dominated by edge effects which are
sensitive to fluctuations on a much smaller scale than R. These effects are a form
of surface noise which depends on the number of ‘particles’ at the boundary; a



Types of Primordial Spectra 271

statistical fluctuation arises according to whether a particle happens to lie just
inside, on or just outside the boundary. If the expected number of particles on a
surface of area S is NS , then we clearly have

δNS ∝ N1/2
S ∝ S1/2 ∝ M1/3, (13.3.22)

so that

σM � δM
M

∝ δNS
M

∝ M−2/3, (13.3.23)

in accordance with Equation (13.3.21). This misleading result can be corrected if
one makes a more realistic definition of the volume corresponding to the mass
scale M . If one smears out the edges of the sphere such as, for example, via a
Gaussian filter (13.3.11), one obtains

σ 2
M = 1

2π2

∫∞

0
P(k) exp(−k2R2)k2 dk; (13.3.24)

the new window function passes sharply from a value of order unity, for k <
1/R = kM, to a vanishingly small value for k > kM: the blurring out of the sphere
has therefore made the window function sharper. With the new definition one
finds, for any n,

σ 2
M = A

4π2
Γ (12(n+ 3))R−(n+3) (13.3.25)

(Γ is the Euler gamma function), which has a dependence on R which is now in
accord with Equation (13.3.18). The behaviour of σM is therefore generally valid
if one uses a Gaussian filter function.

13.4 Types of Primordial Spectra

Having established the description of a primordial stochastic density field in terms
of its power spectrum and related quantities, we should now indicate some pos-
sibilities for the form of this spectrum. It is also important to develop some kind
of intuitive understanding of what the spectrum means physically.
It is the usual practice to suppose that some mechanism, perhaps inflation, lays

down the initial spectrum of perturbations at some very early time, say t = tp,
which one is tempted to identify with the earliest possible physical timescale,
the Planck time. The cosmological horizon at this time will be very small, so the
fluctuations on scales relevant to structure formation will be outside the horizon.
As time goes on, perturbations on larger and larger scales will enter the horizon
as they grow by gravitational instability, becomemodified by the various damping
and stagnation processes discussed in the previous chapters and, eventually, after
recombination, give rise to galaxies and larger structures. The final structures
which form will therefore depend upon the primordial spectrum to a large extent,
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but also upon the cosmological parameters and the form of any dark matter. It is
common to assume a primordial spectrum of a power-law form:

P(k; tp) = Apknp . (13.4.1)

In general, one would expect the amplitudeAp and the spectral indexnp to depend
on k so that Equation (13.4.1) defines the effective amplitude and index for a given
k. In most models, however, np is effectively constant over the entire range of
scales relevant to the observable Universe. The mass variance corresponding to
Equation (13.4.1) is

σM(tp) = Kp
(

M
MH(tp)

)−(3+np)/6
∝ M−αp , (13.4.2)

where MH(tp) is some reference mass scale which, for convenience, we take to be
the horizon mass at time tp.
Clearly the discussion in Section 13.2 demonstrates that a perfectly homoge-

neous distribution of mass in which δ(x) = 0 has a power spectrum which is
identically zero for all k and therefore has zero mass variance on any scale. To
interpret other behaviours of σ 2

M it is perhaps helpful to think of the mass dis-
tribution as being composed of point particles with identical mass m. If these
particles are distributed completely randomly throughout space, then the fluctu-
ations in a volume V – which contains on average N particles and, therefore, on
average, a mass M = mN – will be due simply to statistical fluctuations in the
number of particles from volume to volume. For random (Poisson) distributions
this means that 〈δN2〉1/2 � N1/2, so that the RMS mass fluctuation is given by

σM = δN
N

� N−1/2 ∝ M−1/2, (13.4.3)

corresponding, by Equation (13.4.2), to a value of the mass index α = 1
2 and

therefore to a spectral index n = 0. Since P(k) is independent of k this is usually
called a white-noise spectrum.
Alternatively, if the distribution of particles is not random throughout space

but is instead random over spherical ‘bubbles’ with sharp edges, the RMS mass
fluctuations becomes

σM � N
1/2
S
N

� (4π)1/2
(

3
4π

)1/3N1/3

N
∝ N−2/3 ∝ M−2/3, (13.4.4)

as we have mentioned above; the mass fluctuation expressed by Equation (13.4.4)
corresponds to a mass index α = 2

3 and to a spectral index n = 1. If the edges
of the spheres are blurred, then the ‘surface effect’ is radically modified and it is
then possible to show that

σM ∝ N−5/6 ∝ M−5/6, (13.4.5)
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corresponding to a mass index α = 5
6 and a spectral index n = 2. Equation (13.4.5)

can be found if one assumes that one can create the perturbed distribution from
a homogeneous distribution by some rearrangement of the matter which con-
serves mass. It would be reasonable to infer that this rearrangement can only
take place over scales less than the horizon scale when the fluctuations were laid
down, which gives a natural scale to the ‘bubbles’ we mentioned above. From
Equation (13.2.3) one obtains

δk = 1
Vu

[∫
Vu
δ(x)dx − ik ·

∫
Vu
xδ(x)dx − 1

2k
2 · · · + · · ·

]
. (13.4.6)

In calculating the mass variance σ 2
M , as we have explained, one counts only the

waves with k < R−1, for which the term k · x is small: in the series (13.4.6) the
higher and higher terms are smaller and smaller. Conservation of mass requires
that the first term is zero, or that δk ∝ k and therefore σM ∝ M−5/6. If one also
requires that linear momentum is conserved or, in other words, that the centre of
mass of the system does not move, then the second term in (13.4.6) is also zero
and we obtain δk ∝ k2, corresponding to a spectral index n = 4 and therefore to
a mass index α = 7

6 :

σM ∝ M−7/6. (13.4.7)

It is tempting to imagine that fluctuations in the number of particles inside the
horizon might lead to a ‘natural’ form for the initial spectrum. Such a spectrum
has some severe problems, however. If one takes the time tp to be the Planck
time, for example, the horizon contains on average only one ‘Planck particle’
and one cannot think of the spatial distribution within this scale as random in
the sense required above. Moreover, the white-noise spectrum actually predicts
a very chaotic cosmology in which a galactic-scale perturbation would arrive at
the nonlinear growth phase (Chapter 14) much before teq. Let us consider a per-
turbation with a typical galaxy mass, 1011M�, which contains Nb � 1069 baryons
corresponding to N � Nbσ0r � 1078 particles and therefore characterised by
σM � N−1/2 � 10−39. This perturbation would arrive at the nonlinear regime at a
time tc given, approximately, by

σM(tp)
tc
tp

� σM(tp)
(Tp
Tc

)2
� 1; (13.4.8)

in Equation (13.4.8) we have supposed that tc < teq, and this is confirmed a pos-
teriori by the result Tc � 1012 K. Such collapses would have a drastic effect on
the isotropy and spectrum of the microwave background radiation and on nucle-
osynthesis, so would consequently not furnish an acceptable theory of galaxy
formation.
The spectrum (13.4.5), often called the particles-in-boxes spectrum, also has

problems. It only makes sense to treat the perturbations from a statistical point of
view when the horizon contains a reasonably large number of particles, say Ni �
100. This happens at a time ti corresponding to a temperature Ti � 2×1018 GeV. A
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fluctuation on a scaleM of the order of the horizon mass at Ti has σM(ti) � N−1/2
i

if the particles are distributed randomly, but, as we have explained above, the
‘surface effect’ might produce an RMS mass fluctuation of the form

σM(ti) = BpN−5/6, (13.4.9)

for N > Ni. The constant Bp is obtained in a first approximation by putting
σM(N = Ni) = N−1/2

i ; one thus finds Bp � 5. However, even in this case, the vari-
ance on a scale M � 1011M� yields a completely unsatisfactory result. Taking, as
in the previous case, N � 1078 and allowing the perturbation to grow uninterrupt-
edly (σM ∝ t, for t < teq, and σM ∝ t2/3, for t > teq), i.e. without taking account
of periods of damping or oscillation, one finds

σM(t0) � σM(ti)teqti
(
t0
teq

)2/3
= σM(ti)

(
Ti
Teq

)2Teq
T0r

� 10−7 : (13.4.10)

the fluctuation would not yet have arrived at the nonlinear regime and could
not therefore have formed structure. Equation (13.4.10) is valid for Ω = 1 and
things get worse if Ω < 1. On the scales of galaxies the amplitude of the white-
noise spectrum, np = 0, is too high, while that of the particles-in-boxes spectrum,
np = 2, is much too low.
The problems arising from spectra obtained by reshuffling matter within a hori-

zon volume have led most cosmologists to abandon such an origin and appeal to
some process which occurs apparently outside the horizon to lay down some
appropriate spectrum. As already mentioned, in the early 1970s, Peebles and Yu
(1970), Harrison (1970) and Zel’dovich (1970), working independently, suggested
a spectrum with np = 1, corresponding to

σM(tp) = Kp
(
M
MH,p

)−2/3
(13.4.11)

(the value of Kp proposed by Zel’dovich was of the order of 10−4, so as to produce
fluctuations in the cosmic microwave background at a lower level than the obser-
vational limits of that time, while still allowing galaxy formation by the present
epoch). This spectrum, called the Harrison–Zel’dovich spectrum, is of the same
form as Equation (13.4.4), but is not interpreted as a surface effect. One of its
properties is that fluctuations in the gravitational potential, δϕ, or, in relativistic
terms, in the metric, are independent of length scale r . In fact

δϕ(r) � GδM
r

� Gδρ(r)r 2 � GρσMr 2 ∝ σMM2/3 = const., (13.4.12)

if Equation (13.4.11) holds. The Equation (13.4.11) therefore characterises a spec-
trum which has a metric containing ‘wrinkles’ with an amplitude independent
of scale. As we shall see in Section 14.5, fluctuations of this form enter the cos-
mological horizon with a constant value of the variance, equal to K2

p. For these
reasons this spectrum is often called the scale-invariant spectrum. We shall see in
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Section 14.6 that a spectrum of density fluctuations close to this form is in fact a
common feature of inflationary models.
As a final remark in this section, we should mention that the spectrum of the

density perturbation δ can also be used to construct the spectrum of the per-
turbations to the gravitational potential, δϕ, and to the velocity field v in linear
theory. The results are particularly simple. Since ∇2δϕ ∝ δ, one has k2ϕk ∝ δk,
where ϕk is the Fourier transform of δϕ, so that Pϕ(k)∝ P(k)k−4. For a density
fluctuation spectrum with spectral index n one therefore has nϕ = n−4 so that,
for n = 1, one has nϕ = −3. This spectrum is generally, i.e. whether it refers
to a potential, velocity or density field, called the flicker-noise spectrum, and the
associated variance has a logarithmic divergence at small k. The velocity field is
the gradient of a velocity potential which is just proportional to the gravitational
potential so that vk ∝ kϕk and Pv(k)∝ P(k)k−2. We discuss velocity and poten-
tial perturbations in more detail in Chapter 18, where the exact expressions for
the appropriate power spectra are also given.

13.5 Spectra at Horizon Crossing

In Section 11.5 we defined the time at which a perturbation of mass M enters the
horizon; we found that, for M � MH(zeq) � 5 × 1015(Ωh2)−2M�, this moment
corresponds to a redshift

zH(M) � zeq
(

M
MH(zeq)

)−1/3
� zeq, (13.5.1)

while, for M � MH(zeq), we have

zH(M) � zeq
(

M
MH(zeq)

)−2/3
� zeq; (13.5.2)

this relation is valid for a flat universe or an open universe for z � Ω−1; in this
section we shall assume the simplest case of Ω = 1.
We propose to calculate the variance σ 2

M corresponding to a scaleM at the time
defined by zH(M) if the primordial fluctuation spectrum is of the power-law form
(13.4.2). The perturbation grows without interruption from the moment of its
origin, which we called tp, to the time in which it enters the cosmological horizon,
with a law σM ∝ t ∝ (1+z)−2 before equivalence and σM ∝ t2/3 ∝ (1+z)−1 after
equivalence. If zH(M) > zeq, we therefore have

σM[zH(M)] � σM(tp)
(

1+ zp
1+ zH(M)

)2
= σM(tp)

(
M

MH(zp)

)2/3
= Kp

(
M

MH(zp)

)−αH
,

(13.5.3)

where αH = αp − 2
3 . If, on the other hand, zH(M) < zeq, we have

σM(zH(M)) � σM(tp)
(
1+ zp
1+ zeq

)2 1+ zeq
1+ zH(M) = Kp

(
M

MH(zp)

)−αH
, (13.5.4)
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again identical to (13.5.3). The index αH is the mass index of fluctuations at their
entry into the cosmological horizon. This has a corresponding spectral index nH,
in accord with (13.4.1), which one finds from

αH = αp − 2
3 = 1

2 + 1
6np − 2

3 = 1
2 + 1

6(np − 4) = 1
2 + 1

6nH; (13.5.5)

one therefore has

nH = np − 4. (13.5.6)

The Equation (13.5.5) indicates that the Harrison–Zel’dovich scale-invariant spec-
trum with np = 1 arrives at the cosmological horizon with a mass variance which
is independent of M and equal to K2

p. Steeper spectra (np > 1, αp > 2
3 ) have a

variance which decreases with increasing M at horizon entry; shallower spectra
(np < 1, αp < 2

3 ) have variance increasing with M . For this latter type, there is
the problem that, on sufficiently large scales, one has a universe with extremely
large fluctuations which would include separate closed mini-universes. There is
clearly then a strong motivation for having a spectrum which, whatever its origin,
produces a mass index αp � 2

3 on the very largest scales. As a final comment,
notice that the spectral index of fluctuations at horizon entry (13.5.6) is precisely
the same as the spectral index for fluctuations in the gravitational potential field,
defined in Section 13.4.

13.6 Fluctuations from Inflation

We have already mentioned that one of the virtues of the inflationary cosmology
is that it predicts a spectrum of perturbations which might be adequate for the
purposes of structure formation. The source for these fluctuations is the quan-
tum field Φ which drives inflation in the manner described in Section 7.10. A full
treatment of the origin of these fluctuations is outside the scope of this book
since it requires advanced techniques from quantum field theory. Here we shall
merely give an outline; Brandenberger (1985) gives a nice review. In this section
we use units where � = c = kB = 1.
Suppose that the expectation value of the scalar field Φ(x, t) is homogeneous

in space, i.e. 〈Φ(x, t)〉 = Φ(t). It then follows an equation of motion of the form

Φ̈ + 3HΦ̇ + V ′(Φ) = 0, (13.6.1)

cf. Equation (7.10.5), where V is the effective potential and the prime denotes a
derivative with respect to Φ. As we mentioned in Section 7.10, most inflationary
models satisfy the ‘slow-rolling’ conditions which we shall assume here because
these simplify the calculations. Let us introduce these conditions again in a more
quantitative way. In the slow-rolling approach themotion of the field is damped so
that the force V ′ is balanced by the viscosity term 3HΦ̇: Φ̇ � −V ′/3H. This is the
first slow-rolling condition. The second slow-rolling condition in fact corresponds
to two requirements: firstly that the parameter ε, defined by

ε ≡ m2
P

16π

(
V ′

V

)2
, (13.6.2)
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should be small, i.e.

ε 1, (13.6.3)

which effectivelymeans that V � Φ̇2, the condition for inflation to occur; secondly
that

H2 � 8πV
3m2

P

, (13.6.4)

which, together with (13.6.3), implies that the scale factor is evolving approxi-
mately exponentially: a∝ exp(Ht). The third condition is that η, defined by

η ≡ m
2
pV ′′

8πV
, (13.6.5)

should satisfy

|η|  1, (13.6.6)

which can be thought of as a consistency requirement on the other two conditions,
since it can be obtained from them by differentiation.
We now have to understand what happens when we perturb the equation

(13.6.1). Assuming, as always, that the spatial fluctuations in the Φ field, δΦ = φ,
can be decomposed into Fourier modes φk by analogy with (13.2.1), we obtain

φ̈k + 3Hφ̇k +
[(
k
a

)2
+ V ′′

]
φk = 0. (13.6.7)

It turns out, for reasons we shall not go into, that the V ′′ term in Equation (13.6.7)
is negligible when a given fluctuation scale is pushed out beyond the horizon.
The resulting equation then looks just like a damped harmonic oscillator for any
particular k mode. Applying some quantum theory, it is possible to calculate the
expected fluctuations in each ‘mode’ of this system in much the same way as one
calculates the ground-state oscillations in any system of quantum oscillators. One
finds the solution

〈|φk|2〉 = H2

2k3
. (13.6.8)

One can think of this effect as similar to the Hawking radiation from the event
horizon of a black hole: there is an event horizon in de Sitter space and one there-
fore sees a thermal background at a temperature TH = H/2π which corresponds
to fluctuations in the Φ field in the same manner as the thermal fluctuations at
the Planck epoch we discussed in Chapter 6.
From (13.6.8) we can define a quantity ∆φ(k) by (13.2.8) so that ∆φ = const.∝

H. These fluctuations are therefore of the same amplitude (in an appropriately
defined sense), i.e. independent of scale as long as H is constant.
These considerations establish the form of the spectrum appropriate to the

fluctuations in Φ but we have not yet arrived at the spectrum of the density per-
turbations themselves. The resolution of this step requires some technicalities
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concerning gauge choices which we shall skip in this case. What we are interested
in at the end is the amplitude of the fluctuations when they enter the cosmological
horizon after inflation has finished. If we define ∆2

H(k) to be the value of ∆2(k)
for the fluctuations in the density at scale k when they reenter the horizon after
inflation, one can find

∆2
H(k) �

V∗
m4

Pε∗
, (13.6.9)

where the ‘∗’ denotes the value of V or ε at the time when the perturbation left the
horizon during inflation. One therefore sees the fluctuation on reentry which was
determined by the conditions just as it left, which is physically reasonable. One
does not know the values of these parameters a priori, however, so they cannot
be used to predict the spectral amplitude. In an exactly exponential inflationary
epoch V∗ and ε∗ are constant so that ∆2

H(k) is constant. Since ∆2 ∝ k3P(k),
and PH(k) ∝ P(k)k−4 from (13.5.6), we therefore have P(k) ∝ k, which is the
Harrison–Zel’dovich spectrum we mentioned before in Section 13.4.
In fact, the generic inflationary prediction is not for a pure de Sitter expansion,

so that the quantity ∆2
H is not exactly independent of scale. It is straightforward

to show that the actual spectral index is related to the slow-roll parameters ε∗
(13.6.2) and η∗ (13.6.5) when the perturbation scale k leaves the horizon via

n = 1+ 2η∗ − 6ε∗, (13.6.10)

which gives n = 1 in the slow-rolling limit, as expected.
The quantum oscillations in Φ also lead to the generation of a stochastic back-

ground of gravitational waves with a spectrum and amplitude which depends
on a different combination of slow-roll parameters from the scalar density fluc-
tuation spectrum (in fact, the gravitational wave spectrum depends only on
ε). The relative amplitudes of the gravitational waves and scalar perturbations
also depend on the shape of the potential. Since gravitational waves are of no
direct relevance to structure formation, we shall not discuss them in more detail
here. Gravitational waves can, in principle, also generate temperature fluctua-
tions in the cosmic microwave background, so we shall discuss them briefly in
Section 17.4 and they may ultimately be detectable, a possibility we discuss in
Chapter 21.
We should also mention that the quantum fluctuations in φk have random

phases and therefore should be Gaussian (see Section 14.7) in virtually all realis-
tic inflationary models (except perhaps those with multiple scalar fields or where
the field evolution is nonlinear). This is because one usually assumes the field Φ
to be in its ground state: zero point fluctuations are then those of a ground-state
harmonic oscillator in quantummechanics, i.e. Gaussian. Along with the computa-
tional advantages we shall mention later, this is a strong motivation for assuming
that δ(x) is a Gaussian random field.
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13.7 Gaussian Density Perturbations

In Section 13.2 we defined the power spectrum P(k) of density perturbations,
which measures the amplitude of the fluctuations as a function of wavenumber
k or, equivalently, mass scale M . For some purposes, however, it is necessary
to know not only the spectrum, that is the mean square fluctuation of a given
wavenumber, but also the (probability) distribution of the fluctuations in either
real space or Fourier space. Returning to the discussion we made in Section 13.2,
consider a (large) numberN of realisations of our periodic volume and label these
realisations by Vu1, Vu2, Vu3, . . . , VuN . It is meaningful to consider the probability
distribution P(δk) of the relevant coefficients

δk = |δk| exp(iϑk) = Reδk + i Imδk (13.7.1)

from realisation to realisation across this ensemble. Let us assume that the dis-
tribution is statistically homogeneous and isotropic (as it must be if the Cosmo-
logical Principle holds), and that the real and imaginary parts have a Gaussian
distribution and are mutually independent, so that

P(w) = V1/2
u

(2πα2k)1/2
exp

(
−w

2Vu
2α2k

)
, (13.7.2)

where w stands for either the real part or the imaginary part of δk and α2k =
δ2k/2; δ

2
k is the spectrum (see Section 13.2). This is the same as the assumption

that the phases ϑk in Equation (13.7.1) are mutually independent and randomly
distributed over the interval between ϑ = 0 and ϑ = 2π . In this case the moduli
of the Fourier amplitudes have a Rayleigh distribution:

P(|δk|, ϑk)d|δk|dϑk = |δk|Vu
2πδ2k

exp
(
−|δk|2Vu

2δ2k

)
d|δk|dϑk. (13.7.3)

Because of the assumption of statistical homogeneity and isotropy of the Uni-
verse, the quantity δk depends only on the modulus of the wavevector k, denoted
k, and not on its direction. It is fairly simple to show that, if the Fourier quanti-
ties |δk| have the Rayleigh distribution, then the probability distribution P(δ) of
δ = δ(x) in real space is Gaussian, so that

P(δ)dδ = 1
(2πσ 2)1/2

exp
(
− δ2

2σ 2

)
dδ. (13.7.4)

In fact, Gaussian statistics in real space do not require the distribution (13.7.3) for
the Fourier component amplitudes. One can see that δ(x) is simply a sum over a
large number of Fourier modes. If the phases of each of these modes are random,
then the central limit theorem will guarantee that the resulting superposition will
be close to a Gaussian distribution if the number of modes is large. While (13.7.3)
provides the formal definition of a Gaussian random field, the main requirement
in practice is simply that the phases are random. As we explained in Section 14.6,
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Gaussian fields are stronglymotivated by inflation. This class of field is the generic
prediction of inflationary models where the density fluctuations are generated by
quantum fluctuations in a scalar field during the inflationary phase.
For a Gaussian field δ, not only can the distribution function of values of δ at

individual spatial positions be written in the form (13.7.4), but also the N-variate
joint distribution of a set of δi ≡ δ(xi) can be written as a multivariate Gaussian
distribution:

PN(δ1, . . . , δN) = ‖M‖1/2
(2π)N/2

exp(−1
2V

T ·M · V), (13.7.5)

whereM is the inverse of the correlation matrix C = 〈δiδj〉, V is a column vector
made from the δi, and VT is its transpose. An example for N = 2 will be given in
equation (14.8.2). This expression (13.7.5) is considerably simplified by the fact
that 〈δi〉 = 0 by construction. The expectation value 〈δiδj〉 can be expressed in
terms of the covariance function, ξ(rij),

〈δ(xi)δ(xj)〉 = ξ(|xi − xj|) = ξ(rij), (13.7.6)

where the averages are taken over all spatial positions with |xi − xj| = rij , and
the second equality follows from the assumption of statistical homogeneity and
isotropy. We shall see in the next section that ξ(r) is intimately related to the
power spectrum, P(k). This means that the power spectrum or, equivalently,
the covariance function of the density field is a particularly important statistic
because it provides a complete statistical characterisation of the density field as
long as it is Gaussian.
The ability to construct not only the N-dimensional joint distribution of values

of δ, but also joint distributions of spatial derivatives of δ of arbitrary order,
∂nδ/∂xni , all of the form (13.7.5), but which involve spectral moments (13.2.10),
is what makes Gaussian random fields so useful from an analytical point of view.
The properties of Gaussian random fields are also interesting in the framework of
biased galaxy-formation theories, which we discuss in Section 15.7. In this context
one is particularly interested in regions of particularly high density which one
might associate with galaxies. For example, one can show that the number of
peaks of the density field per unit volume with height δ(x)/σ0 in the range ν to
ν + dν , with ν � 1, is

Npk(ν)dν � 1
(2π)2

γ
R3∗
(ν3 − 3ν) exp(−1

2ν
2)dν, (13.7.7)

while the total number of peaks per unit volume with height exceeding νσ is

npk(ν) � 1
(2π)2

γ
R3∗
(ν2 − 1) exp(−1

2ν
2); (13.7.8)

the quantities R∗ and γ are defined by Equation (13.2.11). The mean distance
between peaks of any height is of order 4R∗. The ratio R0 = σ0/σ1 � R∗/γ rep-
resents the order of magnitude of the coherence length of the field, i.e. the value
of r at which the covariance function ξ(r) becomes zero.
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13.8 Covariance Functions

It is now appropriate to discuss the statistical properties of spatial fluctuations
in ρ. We shall have recourse to much of this material in Chapter 16, when we
discuss the comparison of galaxy-clustering data with quantities related to the
density fluctuation, δ. Let us define the covariance function, introduced in the
previous section by Equation (13.7.6), in terms of the density field ρ(x) by

ξ(r) = 〈[ρ(x)− 〈ρ〉][ρ(x + r)− 〈ρ〉]〉
〈ρ〉2 = 〈δ(x)δ(x + r)〉, (13.8.1)

where the mean is taken over all points x in a representative volume Vu of the
Universe in the manner of Section 13.2. From Equation (13.2.1) we have

ξ(r) = 1
Vu

∫
Vu

∑
k
δk exp(ik · x)

∑
k′
δ∗k′ exp[−ik′ · (x + r)]dx, (13.8.2a)

which becomes

ξ(r) =
∑
k
〈|δk|2〉 exp(−ik · r). (13.8.2b)

Passing to the limit Vu →∞, equation (13.8.2b) becomes

ξ(r) = 1
(2π)3

∫
P(k) exp(−ik · r)dk. (13.8.3)

One can also find the inverse relation quite easily:

〈|δk|2〉 = 1
Vu

∫
ξ(r) exp(ik · r)dr. (13.8.4)

Passing to the limit Vu →∞, the preceding relation can be shown to be

P(k) =
∫
ξ(r) exp(ik · r)dr : (13.8.5)

the power spectrum is just the Fourier transform of the covariance function, a
result known as the Wiener–Khintchine theorem. If µ is the cosine of the angle
between k and r, the integral over all directions of r gives

∫
Ω
exp(−ikrµ)dΩ =

∫ 2π
0

dφ
∫ +1

−1
exp(−ikrµ)dµ = 4π

sinkr
kr

. (13.8.6)

It turns out therefore that

ξ(r) = 1
2π2

∫∞

0
P(k)

sinkr
kr

k2 dk, (13.8.7)

which has inverse

P(k) = 4π
∫∞

0
ξ(r)

sinkr
kr

r 2 dr . (13.8.8)
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Averaging equation (13.8.2b) over r gives

〈ξ(r)〉r = 1
Vu

∑
k
〈|δk|2〉

∫
exp(−ik · r)dr = 0. (13.8.9)

In a homogeneous and isotropic universe the function ξ(r) does not depend on
either the origin or the direction of r, but only on its modulus; the result (13.8.9)
implies therefore that

lim
r→∞

1
r 3

∫ r
0
ξ(r ′)r ′2 dr ′ = 0 : (13.8.10)

in general the covariance function must change sign – from positive at the origin,
at which (13.8.1) guarantees ξ(0) = 〈σ 2〉 � 0, to negative at some r – to make the
overall integral (13.8.10) converge in the correct way. A perfectly homogeneous
distribution would have P(k) ≡ 0 and ξ(r) would be identically zero for all r .
The meaning of the function ξ(r) can be illustrated by the following example.

Imagine that the material in the Universe is distributed in regions of the same size
r0 with density fluctuations δ > 0 and δ < 0. In this case the product δ(x)δ(x+r)
will be, on average, positive for distances r < r0 and negative for r > r0. This
means that the function ξ(r) reaches zero at a value r � r0, which represents the
mean size of regions and therefore the coherence length of the fluctuation field.
Inside the regions themselves, where ξ(r) > 0, there is correlation, while, outside
the regions, where ξ(r) < 0, there is anticorrelation.
The function ξ(r) is the two-point covariance function. In an analogous manner

it is possible to define spatial covariance functions for N > 2 points. For example,
the three-point covariance function is

ζ(r , s, t) = 〈[ρ(x)− 〈ρ〉][ρ(x + r)− 〈ρ〉][ρ(x + s)− 〈ρ〉]〉
〈ρ〉3 , (13.8.11)

which gives

ζ(r , s, t) = 〈δ(x)δ(x + r)δ(x + s)〉, (13.8.12)

where the mean is taken over all the points x and over all directions of r and s
such that |r − s| = t: in other words, over all points defining a triangle with sides
r , s and t.
The generalisation of (13.8.12) to N > 3 is obvious. It is convenient to define

quantities related to the N-point covariance functions called the cumulants, κN ,
which are constructed from the moments of order up to and including N . The
cumulants are defined as the part of the expectation value 〈δ1 . . . δN〉 (δ1 ≡ δ(x1),
etc.), of which (13.8.12) is the special case forN = 3, which cannot be expressed in
terms of expectation values of lower order. Cumulants are also sometimes called
the connected part of the corresponding covariance function. To determine them
in terms of 〈δ1δ2 . . . δN〉 for any order, one simply expresses the required expec-
tation value as a sum over all distinct possible partitions of the set {1, . . . , N},
ignoring the ordering of the components of the set; the cumulant is just the part
of this sumwhich corresponds to the unpartitioned set. This definition makes use
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of the cluster expansion. For example, the possible partitions of the set {1,2,3}
are ({1}, {2,3}), ({2}, {1,3}) ({3}, {1,2}), ({1}, {2}, {3}) and the unpartitioned set
({1,2,3}). This means that the expectation value can be written

〈δ1δ2δ3〉 = 〈δ1〉c〈δ2δ3〉c + 〈δ2〉c〈δ1δ3〉c
+ 〈δ3〉c〈δ1δ2〉c + 〈δ1〉c〈δ2〉c〈δ3〉c + 〈δ1δ2δ3〉c. (13.8.13)

The cumulants are κ3 ≡ 〈δ1δ2δ3〉c, κ2 = 〈δ1δ2〉c, etc. Since 〈δ〉 = 0 by construc-
tion, κ1 = 〈δ1〉c = 〈δ1〉 = 0. Moreover, κ2 = 〈δ1δ2〉c = 〈δ1δ2〉. The second-
and third-order cumulants are simply the same as the covariance functions. The
fourth- and higher-order quantities are different, however. The particularly useful
aspect of the cumulants which motivates their use is that all κN forN > 2 are zero
for a Gaussian random field; for such a field the odd N expectation values are all
zero, and the even ones can be expressed as combinations of 〈δiδj〉 in such a way
that the connected part is zero.
It is possible to define ξ(r) also in terms of a discrete distribution of masses

rather than a continuous density field. Formally one can write the density field
ρ(x) =∑i miδD(x − xi), where the sum is taken over all the mass points labelled
by i and found at position xi; δD is the Dirac function. If all themi =m, the mean
density is 〈ρ〉 = nVm. The probability of finding a mass point in a randomly
chosen volume δV at x is therefore δP = m−1ρ(x)δV ; the joint probability of
finding a point in δV1 and a point in δV2 separated by a distance r is

δ2P2 = 〈ρ(x)ρ(x + r)〉
m2

δV1δV2

= n2V
〈ρ(x)ρ(x + r)〉

〈ρ〉2 δV1δV2

= n2V [1+ ξ(r)]δV1δV2, (13.8.14)

which defines ξ(r) to be the two-point correlation function of the mass points. The
same result holds if we take the probability of finding a point in a small volume
δV , where the density is ρ, to be proportional to ρ. This forms the so-called Poisson
clustering model which we shall use later, in Section 16.6.
One can also extend the (discrete) correlations to orders N > 2 by a straight-

forward generalisation of equation (13.8.14):

δNPN = nNV [1+ ξ(N)(r)]δV1 . . . δVN, (13.8.15)

where r stands for all the rij separating the N points. However, the function
ξ(N)(r), which is called the total N-point correlation function, contains contribu-
tions from correlations of orders less than N . For example, the number of triplets
is larger than a random distribution partly because there are more pairs than in
a random distribution:

δ3P3 = n3V [1+ ξ23 + ξ13 + ξ12 + ζ123]δV1δV2δV3. (13.8.16)
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The part of ξ(3) which does not depend on ξij , usually written ζ123, is called the
irreducible or connected three-point function. The four-point correlation func-
tion ξ(4) will contain terms in ζijk, ξijξkl and ξij , which must be subtracted to
give the connected four-point function η1234. The connected correlation functions
are analogous to the cumulants defined above for continuous variables, and are
constructed from the same cluster expansion. The only difference is that, for
discrete distributions, one interprets single partitions (e.g. 〈δ1〉c) as having the
value unity rather than zero. For the two-point function there are only two par-
titions, ({1}, {2}) and ({1,2}). The first term would correspond to 〈δ1〉〈δ2〉 = 0
in the continuous variable case because 〈δ〉 = 0, but the two expectation val-
ues are each assigned a value of unity in the discrete variable case, so that
δ2P2 ∝ 1+ξ(r) and ξ(2)(r) = ξ(r), as expected. For the three-point function, the
right-hand side of Equation (13.8.12) has, first, three terms corresponding to the
three terms in ξij in Equation (13.8.16), then a product of three single-partitions
each with the value unity, and finally a triplet which corresponds to the connected
part ζ123. This reconciles the forms of (13.8.16) and (13.8.12) and shows that
ξ(3) = ξ23+ ξ13+ ξ12+ζ123. This procedure can be generalised straightforwardly
to higher N .

13.9 Non-Gaussian Fluctuations?

As we have explained, the power spectrum of density fluctuations scales in the
linear regime in such a way that each mode evolves independently according to
the growth law. This means, for example, that σM ∝ t2/3 in an Einstein–de Sitter
model. Since each mode evolves independently, the random-phase hypothesis of
Section 13.7 continues to hold as the perturbations evolve linearly and the distri-
bution of δ should therefore remain Gaussian.
Notice, however, that δ is constrained to have a value δ � −1, otherwise the

energy density ρ would be negative. The Gaussian distribution (13.7.3) always
assigns a non-zero probability to regions with δ < −1. The error in doing this
is negligible when σM is small because the probability of δ < −1 is then very
small, but, as fluctuations enter the nonlinear regime with σM � 1, the error must
increase to a point where the Gaussian distribution is a very poor approximation
to the true distribution function. What happens is that, as the fluctuations evolve
into this regime, mode-coupling effects cause the initial distribution to skew, gen-
erating a long tail at high δwhile they are also bounded at δ = −1. Notice, however,
that if the mass distribution is smoothed on a scale M , one should recover the
regime where σM  1, where the field will still be Gaussian. Large scales there-
fore continue to evolve linearly, even when small scales have undergone nonlinear
collapse in the manner described in the next chapter.
The generation of non-Gaussian features as a result of the nonlinear evolution

of initially Gaussian perturbations is well known and can be probed using numer-
ical simulations or analytical approximations. We shall not say much about this
question here, except to remark that, on scales where such effects are important,
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the power spectrum, or, equivalently, the covariance function, does not furnish a
complete statistical description of the properties of the density field δ.
Despite the strong motivation for the Gaussian scenario from inflationary mod-

els we should at least mention the possibility that either the primordial fluctua-
tions are not Gaussian or that some later mechanism, apart from gravity, induces
non-Gaussian behaviour during their evolution.
Attempts to construct inflationary models with non-Gaussian fluctuations due

to oscillations in Φ have largely been unsuccessful. It is necessary to have some
kind of feature in the potential V(Φ) or to have more than one scalar field. There
are, however, some other possibilities. First, as wementioned briefly in Section 7.6,
it is possible that some form of topological defect might survive a phase tran-
sition in the early Universe. These defects comprise regions of trapped energy
density which could act as seeds for structure formation. However, in such pic-
tures the seeds are very different from quantum fluctuations induced during infla-
tion and would be decidedly non-Gaussian at very early times. One of the early
favourites for a theory based on this idea was the cosmic-string scenario in which
one-dimensional string-like defects act as seeds. The behaviour of a network of
cosmic strings is difficult to handle evenwith numericalmethods and this scenario
did not live up to its early promise. The original idea was that the evolving net-
work would form loops of string which shrink and produce gravitational waves; as
they do so they accrete matter. More accurate simulations, however, showed that
this does not happen and that small loops cannot be responsible for structure
formation. A revised version of this theory has been suggested more recently, in
which long pieces of string, moving relativistically, produce ‘wakes’ which can give
rise to sheet-like inhomogeneities. Another possibility is that three-dimensional
defects called textures, rather than one-dimensional strings, might be the required
seed. Perhaps primordial black holes could also act as a form of zero-dimensional
seed. These pictures do not seem as compelling as the ‘inflationary paradigm’ we
have mentioned above, but they are not ruled out by present observations.
The second possibility is that some astrophysical mechanismmight induce non-

Gaussian behaviour. A possible example is that some kind of cosmic explosion,
perhaps associated with early formation of very massive objects, could form a
blast wave which would push material around into a bubbly or cellular pattern at
early times (e.g. Ostriker and Cowie 1981). This would be non-Gaussian and would
subsequently evolve under its own gravity to form a distribution very dissimilar to
that which would form in an inflationary model. Unfortunately, this model seems
to be ruled out by the lack of any distortions in the spectrum of the microwave
background radiation; see Chapter 19.
Although there is no strongly compelling physical motivation for non-Gaussian

fluctuations, one should be sure to test the Gaussian assumption as rigorously
as possible. One can do this in many ways, using the microwave background and
galaxy-clustering statistics. Until non-Gaussian models are shown to be excluded
by the observations, there is always the possibility that some physics we do not yet
understand created initial fluctuations of a very different form to those predicted
by inflation.
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Bibliographic Notes on Chapter 13

An interesting discussion of the properties of primordial power spectra is given
by Gott (1980). Adler (1981) and Vanmarcke (1983) are useful texts on the gen-
eral mathematical properties of Gaussian random fields; application of Gaussian
random fields in a cosmological context are discussed by Bardeen et al . (1986), a
famous paper known to the community as BBKS. Non-Gaussian perturbations are
discussed by Brandenberger (1990) and Coulson et al . (1994).

Problems

1. Show that if a perturbation field has a power spectrum of the form k exp(−λ0k), then
the covariance function crosses zero at r = λ0

√
3. Give a physical interpretation of

this result.

2. Calculate the spectral parameters (13.2.11) for the power spectrum defined in Ques-
tion 1.

3. A lognormal field Y(r) is defined by Y(r) = exp[X(r)], where X is a Gaussian ran-
dom field. Calculate the two-point covariance function of Y in terms of the covari-
ance function of X.

4. For the lognormal field Y defined in Question 3 calculate the three-point function
(a) in terms of the two-point function ofX, and (b) in terms of the two-point function
of Y .

5. Repeat Questions 3 and 4 for the χ2 field defined by Z = X2, where X is a Gaussian
random field.



14

Nonlinear
Evolution

After recombination, fluctuations in the matter component δ on a scale M >
M(i)J (zrec) � 105M� grow according to the theory developed in Chapters 10–12
while |δ|  1. This is obviously a start, but it cannot be used to follow the evolu-
tion of structure into the strongly nonlinear regime where overdensities can exist
with δ� 1. A cluster of galaxies, for example, corresponds to a value of δ of order
several hundred or more. To account for structure formation we therefore need
to develop techniques for studying the nonlinear evolution of perturbations. This
is a much harder problem than the linear case, and exact solutions are difficult
to achieve. We shall mention some analytical and numerical approaches in this
chapter.

14.1 The Spherical ‘Top-Hat’ Collapse

The simplest approach to nonlinear evolution is to follow an inhomogeneity which
has some particularly simple form. This is not directly relevant to interesting cos-
mological models, because the real fluctuations are expected to be highly irregu-
lar and random. Considering cases of special geometry can nevertheless lead to
important insights. In this spirit let us consider a spherical perturbation with con-
stant density inside it which, at an initial time ti � trec, has an amplitude δi > 0
and |δi|  1. This sphere is taken to be expanding with the background universe
in such a way that the initial peculiar velocity at the edge, Vi, is zero. As we have
mentioned before, the symmetry of this situation means that we can treat the
perturbation as a separate universe and, for simplicity, we assume that the back-
ground universe at ti is described by an Einstein–de Sitter model; in this case we
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get

δ = δ+(ti)
(
t
ti

)2/3
+ δ−(ti)

(
t
ti

)−1
, (14.1.1a)

V = i
δ̇
k
= i
kiti

[
2
3δ+(ti)

(
t
ti

)−1/3
− δ−(ti)

(
t
ti

)−4/3]
(14.1.1b)

(as usual, the symbol ‘+’ indicates the growing mode, while ‘−’ denotes the
decaying mode). The combination of growing and decreasing modes in Equa-
tions (14.1.1) is necessary to satisfy the correct boundary condition on the veloc-
ity: Vi = 0 requires that δ+(ti) = 3

5δi. One can assume that, after a short time, the
decaying mode will become negligible and the perturbation remaining will just be
δ � δ+(ti). Let us take the initial value of the Hubble expansion parameter to be
Hi. Assuming that pressure gradients are negligible, the sphere representing the
perturbation evolves like a Friedmann model whose initial density parameter is
given by

Ωp(ti) = ρ(ti)(1+ δi)ρc(ti)
= Ω(ti)(1+ δi), (14.1.2)

where the suffix ‘p’ denotes the quantity relevant for the perturbation, while ρ(ti)
and Ω(ti) refer to the unperturbed background universe within which the pertur-
bation resides. Structure will be formed if, at some time tm, the spherical region
ceases to expand with the background universe and instead begins to collapse.
This will happen to any perturbation with Ωp(ti) > 1. From Equations (14.1.2)
and (2.6.4) this condition can easily be seen to be equivalent to

δ+(ti) = 3
5δi >

3
5
1−Ω(ti)
Ω(ti)

= 3
5

1−Ω
Ω(1+ zi) , (14.1.3)

where Ω is the present value of the density parameter. In universes with Ω < 1,
however, the fluctuation must exceed the critical value (1 − Ω)/Ω(1 + zi); it is
interesting to note that in this case the condition (14.1.3) implies that the growing
perturbation reaches the nonlinear regime before the time t∗ at which the universe
becomes curvature dominated and therefore enters a phase of undecelerated free
expansion. For Ω � 1, on the other hand, there is no problem.
The expansion of the perturbation is described by the equation

(
ȧ
ai

)2
= H2

i

[
Ωp(ti)

ai
a

+ 1−Ωp(ti)
]
, (14.1.4)

from which we easily obtain that the density of the perturbation at time tm is

ρp(tm) = ρc(ti)Ωp(ti)
[Ωp(ti)− 1

Ωp(ti)

]3
; (14.1.5)

the value of tm, from Equation (2.4.9) (where t0 is replaced by ti) and Equa-
tion (14.1.5), is just

tm = π
2Hi

Ωp(ti)
[Ωp(ti)− 1]3/2

= π
2Hi

[
ρc(ti)
ρp(tm)

]1/2
=
[

3π
32Gρp(tm)

]1/2
. (14.1.6)
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In an Einstein–de Sitter universe the ratio χ between the background density,
ρ(tm), and the density inside the perturbation, ρp(tm), is obtained from the pre-
vious equation and from

ρ(tm) = 1

6πGt2m
; (14.1.7)

it follows that

χ = ρp(tm)
ρ(tm)

=
(
3π
4

)2
� 5.6, (14.1.8)

which corresponds to a perturbation δ+(tm) � 4.6; the extrapolation of the linear
growth law, δ+ ∝ t2/3, would have yielded, from (14.1.6),

δ+(tm) = δ+(ti)
(
tm
ti

)2/3
= δ+(ti)(34π)2/3

Ωp(ti)2/3

δi
� 3

5(
3
4π)

2/3 � 1.07, (14.1.9)

corresponding to the approximate value ρp(tm)/ρ(tm) � 1+ δ+(tm) � 2.07. The
perturbation will subsequently collapse and, if one can still ignore pressure effects
and the configuration remains spherically symmetric, in a time tc of order 2tm,
one will find an infinite density at the centre. In fact, when the density is high,
slight departures from this symmetry will result in the formation of shocks and
considerable pressure gradients. Heating of the material will occur due to the
dissipation of shocks which converts some of the kinetic energy of the collapse
into heat, i.e. random thermal motions. The end result will therefore be a final
equilibrium state which is not a singular point but some extended configuration
with radius Rvir and mass M . From the virial theorem the total energy of the
fluctuation is

Evir = −1
2
3GM2

5Rvir
. (14.1.10)

If in the collapsing phase we can ignore the possible loss of mass from the system
due to effects connected with shocks, and possible loss of energy by thermal
radiation, the energy and mass in (14.1.10) are the same as the fluctuation had at
time tm,

Em = −3
5
GM2

Rm
, (14.1.11)

where Rm is the radius of the sphere at the moment of maximum expansion. Hav-
ing assumed that the pressure is zero, in Equation (14.1.11) no account is taken of
the contribution of thermal energy; the kinetic energy due to the expansion is zero
by definition at this point. From Equations (14.1.10) and (14.1.11) we therefore
have Rm = 2Rvir, so that the density in the equilibrium state is ρp(tvir) = 8ρp(tm).
One usually assumes that at tc, the time of maximum compression, the density
is of order ρp(tvir). Numerical simulations of the collapse allow an estimate to be
made of the time taken to reach equilibrium: one finds that tvir � 3tm. If at times
tc and tvir the universe is still described by an Einstein–de Sitter model, the ratios
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between the density in the perturbation and the mean density of the universe at
these times are

ρp(tc)
ρ(tc)

= 228χ � 180, (14.1.12a)

ρp(tvir)
ρ(tvir)

= 328χ � 400, (14.1.12b)

respectively. An extrapolation of linear perturbation theory would give

δ+(tc) � 3
5(

3
4π)

2/322/3 � 1.68, (14.1.13a)

δ+(tvir) � 3
5(

3
4π)

2/332/3 � 2.20, (14.1.13b)

which correspond to values of 2.68 and 3.20 for the ratio of the densities, in place
of the exact values given by Equations (14.1.12a) and (14.1.12b).

14.2 The Zel’dovich Approximation

Themodel discussed in the previous section, though very instructive in its conclu-
sions, suffers from some notable defects. Above all, reasonable models of struc-
ture formation do not contain primordial fluctuations at ti � trec, which are organ-
ised into neat homogeneous spherical regions with zero peculiar velocity at their
edge. Moreover, even if this were the case at the beginning, such a symmetri-
cal configuration is strongly unstable with respect to the growth of non-radial
motions during the expansion and collapse phases of the inhomogeneity. In fact,
the classic work of Lin et al . (1965) showed that, for a generic triaxial perturba-
tion, the collapse is expected to occur not to a point, but to a flattened structure
of quasi-two-dimensional nature. The usual descriptive term for such features is
pancakes.
The spherical top-hat model is only reasonably realistic for perturbations on

scales just a little larger than M(i)J (zrec). In this case, however, pressure is not
negligible and dissipation can be significant during the collapse. Presumably what
form in such a situation are more or less spherical protoobjects in which gravity
is balanced by pressure forces.
It is more complicated to study the development of perturbations on scales

M � M(a)D (zrec). Of course, one could simply resort to numerical methods like
those we shall discuss in Section 15.5. However, some simplifying assumptions
are possible. For example, in this situation, pressure would be effectively zero
and the fluid can be treated like dust. Under this assumption it is in fact possible
to understand the growth of structure analytically using a clever approximation
devised by Zel’dovich (1970). This approximation actually predicts that the den-
sity in certain regions – called caustics – should become infinite, but the gravita-
tional acceleration caused by these regions remains finite. Of course, in any case
one cannot justify ignoring pressure when the density becomes very high, for
much the same reason as we discussed in Section 15.1 in the context of spherical
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collapse: one forms shock waves which compress infalling material. At a certain
point the process of accretion onto the caustic will stop: the condensed matter
is contained by gravity within the final structure, while the matter which has not
passed through the shock wave is held up by pressure. It has been calculated that
about half the material inside the original fluctuation is reheated and compressed
by the shock wave. An important property of the structures which thus form is
that they are strongly unstable to fragmentation. In principle, therefore, one can
generate structure on smaller scales than the pancake.
Let us now describe the Zel’dovich approximation in more detail, and show

how it can follow the evolution of perturbations until the formation of pancakes.
Imagine that we begin with a set of particles which are uniformly distributed in
space. Let the initial (i.e. Lagrangian) coordinate of a particle in this unperturbed
distribution be q. Now each particle is subjected to a displacement corresponding
to a density perturbation. In the Zel’dovich approximation the Eulerian coordinate
of the particle at time t is

r(t,q) = a(t)[q − b(t)∇qΦ0(q)], (14.2.1)

where r = a(t)x, with x a comoving coordinate, and we have made a(t) dimen-
sionless by dividing throughout by a(ti), where ti is some reference time which
we take to be the initial time. The derivative on the right-hand side is taken with
respect to the Lagrangian coordinates. The dimensionless function b(t) describes
the evolution of a perturbation in the linear regime, with the condition b(ti) = 0,
and therefore solves the equation

b̈ + 2
ȧ
a
ḃ − 4πGρb = 0. (14.2.2)

This equation corresponds to (10.6.14), with vanishing pressure term, which
describes the gravitational instability of a matter-dominated universe. For a flat
matter-dominated universe we have b ∝ t2/3 as usual. The quantity Φ0(q) is pro-
portional to a velocity potential, i.e. a quantity of which the velocity field is the
gradient, because, from Equation (14.2.1),

V = dr
dt

−Hr = adx
dt

= −aḃ∇qΦ0(q); (14.2.3)

this means that the velocity field is irrotational. The quantity Φ0(q) is related to
the density perturbation in the linear regime by the relation

δ = b∇2
qΦ0, (14.2.4)

which is a simple consequence of Poisson’s equation.
The Zel’dovich approximation is therefore simply a linear approximation with

respect to the particle displacements rather than the density, as was the linear
solution we derived above. It is conventional to describe the Zel’dovich approxi-
mation as a first-order Lagrangian perturbation theory, while what we have dealt
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with so far for δ(t) is a first-order Eulerian theory. It is also clear that Equa-
tion (14.2.1) involves the assumption that the position and time dependence of
the displacement between initial and final positions can be separated. Notice that
particles in the Zel’dovich approximation execute a kind of inertial motion on
straight line trajectories.
The Zel’dovich approximation, though simple, has a number of interesting prop-

erties. First, it is exact for the case of one-dimensional perturbations up to the
moment of shell crossing. As we have mentioned above, it also incorporates irro-
tational motion, which is required to be the case if it is generated only by the
action of gravity (due to the Kelvin circulation theorem). For small displacements
between r and a(t)q, one recovers the usual (Eulerian) linear regime: in fact, Equa-
tion (14.2.1) defines a unique mapping between the coordinates q and r (as long
as trajectories do not cross); this means that ρ(r, t)d3r = 〈ρ(ti)〉d3q or

ρ(r, t) = 〈ρ(t)〉
|J(r, t)| , (14.2.5)

where |J(r, t)| is the determinant of the Jacobian of themapping between q and r:
∂r/∂q. Since the flow is irrotational, the matrix J is symmetric and can therefore
be locally diagonalised. Hence

ρ(r, t) = 〈ρ(t)〉
3∏
i=1
[1+ b(t)αi(q)]−1 : (14.2.6)

the quantities 1+b(t)αi are the eigenvalues of the matrix J (the αi are the eigen-
values of the deformation tensor). For times close to ti, when |b(t)αi|  1, Equa-
tion (14.2.6) yields

δ � −(α1 +α2 +α3)b(t), (14.2.7)

which is the law of perturbation growth in the linear regime.
Equation (14.2.6) indicates that at some time tsc, when b(tsc) = −1/αj , an

event called shell-crossing occurs such that a singularity appears and the den-
sity becomes formally infinite in a region where at least one of the eigenvalues (in
this case αj) is negative. This condition corresponds to the situation where two
points with different Lagrangian coordinates end up at the same Eulerian coordi-
nate. In other words, particle trajectories have crossed and the mapping (14.2.1) is
no longer unique. A region where the shell-crossing occurs is called a caustic. For a
fluid element to be collapsing, at least one of theαj must be negative. If more than
one is negative, then collapse will occur first along the axis corresponding to the
most negative eigenvalue. If there is no special symmetry, one therefore expects
collapse to be generically one dimensional, i.e. to a sheet or ‘pancake’. Only if two
(or three) negative eigenvalues, very improbably, are equal in magnitude can the
collapse occur to a filament (or point). One therefore expects ‘pancake’ formation
to be the generic result of structure collapse.
The Zel’dovich approximation matches very well the evolution of density per-

turbations in full N-body calculations until the point where shell crossing occurs
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Figure 14.1 Comparison of the Zel’dovich approximation (b) and an N-body experiment
(a) for the same initial conditions. Agreement is good, except for the ‘fuzzy’ appearance
of the pancake regions which is due to the motion of particles after shell-crossing.

(Coles et al . 1993a); we shall discuss N-body methods later on. After this, the
approximation breaks down completely. According to Equation (14.2.1) particles
continue tomove through the caustic in the same direction as they did before. Par-
ticles entering a pancake from either side merely sail through it and pass out the
opposite side. The pancake therefore appears only instantaneously and is rapidly
smeared out. In reality, the matter in the caustic would feel the strong gravity
there and be pulled back towards it before it could escape through the other side.
Since the Zel’dovich approximation is only kinematic it does not account for these
close-range forces and the behaviour in the strongly nonlinear regime is there-
fore described very poorly. Furthermore, this approximation cannot describe the
formation of shocks and phenomena associated with pressure. The problem of
shell-crossing is inevitable in the Zel’dovich approximation. In order to prevent
this from interfering too much in calculations, one can filter out the small-scale
fluctuations from the initial conditions which give rise to shell-crossing. If the
power spectrum is a decreasing function of mass, then the large scales can be
evolving in the quasilinear regime (i.e. before shell-crossing) even when a higher
resolution would reveal considerable small-scale caustics. By smoothing the den-
sity field one removes these small-scale events but does not alter the kinematical
evolution of the large-scale field. The best way to implement this idea appears to
be to filter the initial power spectrum according to

P(k)→ P(k) exp(−k2/k2G), (14.2.8)

where knl < kG < 1.5knl and knl is the characteristic nonlinear wavenumber given
approximately by

1
2π2

∫ knl
0
P(k)k2 dk = 1, (14.2.9)
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so that the RMS density fluctuation σM on a scale R � 2π/knl is of order unity. The
performance of the Zel’dovich approximation, the ‘smoothed’ Zel’dovich approx-
imation and a full N-body simulation from a realisation of Gaussian initial condi-
tions is shown in Figure 14.1.

14.3 The Adhesion Model

The smoothed Zel’dovich approximation merely ignores the problem of shell-
crossing. If one is forced to deal with it, in other words if one wants to study
the mass distribution on scales where σM > 1, then one must come up with
some other approach. One relatively straightforward way to extend the Zel’dovich
approximation is through the so-called adhesion model.
In the adhesion model one assumes that the particles stick to each other when

they enter a caustic region because of an artificial viscosity which is intended to
simulate the action of strong gravitational effects inside the overdensity forming
there. This ‘sticking’ results in a cancellation of the component of the velocity of
the particle perpendicular to the caustic. If the caustic is two dimensional, the par-
ticles will move in its plane until they reach a one-dimensional interface between
two such planes. This would then form a filament. Motion perpendicular to the
filament would be cancelled, and the particles will flow along it until a point where
two or more filaments intersect, thus forming a node. The smaller the viscosity
term is, the thinner the sheets and filaments will be, and the more point-like the
nodes will be. Outside these structures, the Zel’dovich approximation is still valid
to high accuracy. Comparing simulations made within this approximation with
full N-body calculations shows that it is quite accurate for overdensities up to
δ � 10.
Let us begin by rewriting the Euler and continuity equations, together with the

Poisson equation (all ignoring the effects of pressure), in a slightly altered form

∂V
∂t

+ ȧ
a
V + 1

a
(V · ∇x)V = −1

a
∇xϕ, (14.3.1a)

∂ρ
∂t

+ 3
ȧ
a
ρ + 1

a
∇x · ρV = 0, (14.3.1b)

∇2ϕ = 4πGa2ρ, (14.3.1 c)

which are Equations (10.2.1b), (10.2.1a) and (10.2.1 c), with v = rȧ/a+V ,V = aẋ
and r = a(t)x; x is a comoving coordinate. The Equation (14.3.1 c) is not needed
in this section, but we have included it here for the sake of completeness. The
Zel’dovich approximation is equivalent to putting the right-hand side of (14.3.1a)
equal to (2ȧ/a + b̈/ḃ)V . In this case, with the substitution η = a3ρ and U =
V/aḃ = dx/db, the first two of the preceding equations become

∂η
∂b

+∇x · ηU = 0 (14.3.2a)

∂U
∂b

+ (U · ∇x)U = 0. (14.3.2b)
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The adhesion model involves modifying the Equation (14.3.2b) by introducing a
viscosity term ν , which allows the particles to stick together:

∂U
∂b

+ (U · ∇x)U = ν∇2
xU . (14.3.3)

The effect of this term is to make the particles ‘feel’ the inside of collapsed struc-
tures. It remains negligible outside these regions. The viscosity ν has the dimen-
sions of ‘length squared’ in this representation because our ‘time’ coordinate is
actually dimensionless, so the model basically requires that d � √

ν should be
much less than the typical dimension of the structures forming. Equation (14.3.3)
is well known in the mathematical literature as the Burgers equation. In many
cases, and this is true in our case, this equation has an exact solution. With the
so-called Hopf–Cole substitution,

U = −2ν∇x lnW, (14.3.4)

Equation (14.3.3) becomes the diffusion equation

∂W
∂b

= ν∇2
xW, (14.3.5)

which, in the original variables, has the solution

U(x, t) =
∫
b(t)−1(x − q) exp[(2ν)−1G(x,q, b)]d3q∫

exp[(2ν)−1G(x,q, b)]d3q
, (14.3.6)

where

G(x,q, b) = Φ0(q)− (x − q)2
2b

. (14.3.7)

For small values of ν the main contribution to the integral in Equation (14.3.6)
comes from regions where the function G has a maximum. This property allows
a simplified treatment of the problem. The Eulerian position of the particle can
be found by solving the integral equation

x(q, t) = q +
∫ b(t)
0

U[x(q, b′), b′]db′. (14.3.8)

The adhesionmodel furnishes results in accordwith the Zel’dovich approximation
at distances l� d from the structure, but allows one to follow the formation of
structure insofar as it prevents structure from being erased by shell-crossing.
It also allows one to avoid the singularities which occur in the usual Zel’dovich
approximation. In many simple cases the solution (14.3.6) does indeed allow one
to study the formation of structure to high accuracy even in a highly advanced
phase of nonlinearity.
The spatial distribution of particles obtained by letting the parameter ν tend

to zero represents a sort of ‘skeleton’ of the real structure: nonlinear evolution
generically leads to the formation of a quasicellular structure, which is similar
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to a ‘tessellation’ of irregular polyhedra having pancakes for faces, filaments for
edges and nodes at the vertices. This skeleton, however, evolves continuously as
structures merge and disrupt each other through tidal forces; gradually, as evo-
lution proceeds, the characteristic scale of the structures increases. In order to
interpret the observations we have already described in Chapter 4, one can think
of the giant ‘voids’ as being the regions internal to the cells, while the cell nodes
correspond to giant clusters of galaxies. While analytical methods, such as the
adhesion model, are useful for mapping out the skeleton of structure formed
during the nonlinear phase, they are not adequate for describing the highly non-
linear evolution within the densest clusters and superclusters. In particular, the
adhesionmodel cannot be used to treat the process of merging and fragmentation
of pancakes and filaments due to their own (local) gravitational instabilities.

14.4 Self-similar Evolution

A possible way to treat highly nonlinear evolution in the framework of ‘bottom-up’
scenarios is to introduce the concept of self-similarity or hierarchical clustering.
As we have already explained, in the isothermal baryonmodel or in the moremod-
ern CDM model, the first structures to enter the nonlinear regime are expected to
be on a mass scale of orderM(i)J (zrec). Galaxies and larger structures then form by
merging of such objects into objects of higher mass. This process is qualitatively
different from that described by the Zel’dovich and adhesion approximations,
which are more likely to be accurate on scales relevant to clusters and super-
clusters, while we need something else to describe the formation of structure on
scales up to this.

14.4.1 A simple model

To illustrate some of these ideas, let us assume that the Universe is well-described
by an Einstein–de Sitter model. A perturbation with mass M > MJ, which we use
from now on to mean M(i)J (zrec), arrives in the nonlinear regime, approximately,
at a time tM such that

σM(trec)
(
tM
trec

)2/3
� 1, (14.4.1)

whereσM(trec) is the RMSmass fluctuation on the scaleM at t = trec. One therefore
has the relationship

tM � trecσM(trec)−3/2 = tJ
(
M
MJ

)3αrec/2
, (14.4.2)

where the quantityαrec is defined in Section 13.4. From Equation (14.4.2) it follows
that

M � MJ

(
tM
tJ

)2/3αrec
, (14.4.3)
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where tJ = tM for M � MJ. As we explained in Section 14.1, if we think of the
perturbation as a spherical ‘blob’, then the time tM practically coincides with the
moment at which the perturbation ceases to expand with the background Uni-
verse and begins to collapse. In the general case expressed by (14.4.2), one can
apply the simple scheme described in Section 14.1: one can easily obtain from
Equations (14.1.6) and (14.4.2) that, at virial equilibrium, the perturbation has a
density

ρM � 3π
32Gt2M

� ρJ
(
M
MJ

)−3αrec
, (14.4.4)

where we have put ρM(MJ) = ρJ. If rM is the radius of a (collapsed) perturbation
of mass M , from (14.4.4) and from the fact that M � ρMr 3M, one finds

ρM = ρJ
(
rM
rJ

)−γvir
, (14.4.5)

where the meaning of rJ is clear; the exponent γvir is given by the relation

γvir = 9αrec
3αrec + 1

= 3(nrec + 3)
5+nrec . (14.4.6)

From Equations (14.4.2) and (14.4.5) we obtain

rM = rJ
(
tvir
tJ

)2/γvir
. (14.4.7)

We can also relate the mass M to the virial velocities generated by it, VM , in this
model. The result is

M ∝ V12/(1−nrec)
M . (14.4.8)

If nrec = −2, then this can explain the M ∝ V4
M relationship implied by the

observed correlation between L and V for galaxies, known as the Tully–Fisher
relationship, Equation (4.3.2).
A simple interpretation of the model just described, which is called the hier-

archical clustering model, is the following. The Universe at time tM∗ on a scale
r < rM∗ contains condensed objects of various masses M and corresponding
sizes rM according to a hierarchical arrangement, in which the objects of one
scale are the building blocks from which objects on higher scales are made.
This arrangement holds up to the scale M∗ which is the largest mass scale to
have reached virial equilibrium. For masses greater than M∗, fluctuations are
small and still evolving in the linear regime so that, for r > rM∗ , we have
δρm(r) ∝ σM ∝ M−αrec ∝ r−3αrec = r−(3+nrec)/2. These small fluctuations will
grow and, when t > tM∗ , objects on a higher mass scale thanM∗ will collapse and
form a higher level of the hierarchy. Simple though it is, this description seems to
provide a fairly accurate representation of the behaviour of N-body simulations
of hierarchical clustering in the highly nonlinear phase.
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We can take this formulation further and model the behaviour of the two-point
correlation of the matter fluctuations. Let us divide the possible range of masses
at time t0 into three intervals: (a) scales corresponding to masses still in the linear
regime, i.e. those with tM > t0 or, equivalently, M > M(t0) = M0; (b) scales which
have reached their radius of maximum expansion but have not yet reached virial
equilibrium – for these scales t0 > tM > t0/3; and (c) scales which have reached
virial equilibrium, i.e. those with tM < t0/3.
The relationship between M and r for scales in the first interval is just

M = 4
3π[ρ0m + δρm(r)]r 3 � 4

3πρ0mr
3, (14.4.9)

while for the second and the third we have

M = 4
3πρcMr

3, (14.4.10)

where ρcM is the density of the condensation of mass M which coincides with ρM
given in (14.4.5) for those condensations already virialised. Because ρcM � 〈ρ〉
for scales of interest in this context we have, from Section 13.7,

ξ(r) �
〈
ρcM(r)
ρ



− 1 �

〈
ρcM(r)
ρ



. (14.4.11)

For the scales which are still in the linear regime we have

ξ(r) � σ 2
M ∝ r−(nrec+3). (14.4.12)

From Equations (14.4.5) and (14.4.11) one can obtain, for the third interval,

ξ(r) � (72χ − 1)
(
r
rvir

)−γvir
, (14.4.13)

where rvir is the scale which has just reached virial equilibrium and which corre-
sponds to a mass scale Mvir.
In the second interval we cannot write an exact expression for ξ(r) for any

value of r . For the scale rM0 , which has just reached maximum expansion, we have
ξ(rM0) � χ − 1. For scales rvir � r � rM0 one can introduce a covariance func-
tion which is approximated by a power law, by analogy with Equations (14.4.12)
and (14.4.13), so that it matches the exact values at rvir and rM0 :

ξ(r) � (72χ − 1)
(
r
rvir

)−γ̄
� (χ − 1)

(
r
rM0

)−γ̄
, (14.4.14)

with exponent γ̄ given by

γ̄ = ln[(72χ − 1)/(χ − 1)]
ln(rM0/rvir)

. (14.4.15)
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Let us recall that, from (14.4.3), we have

M0 = 4
3πr

3
M0
χρ0m = MJ

(
t0
tJ

)2/3αrec
, (14.4.16)

Mvir = 4
3πr

3
vir72χρ0m = MJ

(
t0
3tJ

)2/3αrec
, (14.4.17)

so that

γ̄ = 3 ln[(72χ − 1)/(χ − 1)]
ln 72+ ln 81/(3+nrec) � 3.18

1+ 1.03/(3+nrec) . (14.4.18)

One can show that forΩ ≠ 1 one hasχ′ = π2/[4Ω(H0t0)2] instead ofχ = (34π)2 �
5.6; for Ω = 0.1, for example, this yields χ′ � 30.6 and Equation (14.4.18) gives
γ′ = 3.03/[1+ 0.349/(3+nrec)].
In this way, in the case Ω = 1, one obtains practically the complete behaviour

of ξ(r) for a given nrec; the only part not covered is that in which χ − 1 � 5 �
ξ(r) � 1, where the correlation function passes gradually between the behaviour
described by Equations (14.4.12) and (14.4.14). In the case Ω = 0.1 the missing
range is larger, χ′−1 � 30 � ξ(r) � 1. In any case these results can probably only
be interpreted meaningfully in the regime where ξ � 1. It is interesting to note
that, with a spectral index at recombination given by nrec � 0, we have γvir � 1.8.

14.4.2 Stable clustering

An alternative approach to self-similar evolution that makes a closer contact with
dynamics of clustering evolution is to proceed from the power spectrum. Consider
the behaviour of the linear power spectrum smoothed on a scale Rf; this is defined
in Equation (13.3.12). At any time there will be a characteristic comoving scale R∗

such that the spectrum smoothed on that scale has unit variance. If we assume a
flat Friedmann model so that the linear density fluctuations grow as t2/3 and an
initial power-law spectrum of the form P(k) = Akn, then this characteristic scale
varies as

R∗(t)∝ t4/(3n+9). (14.4.19)

This, in turn corresponds to a characteristic mass scale M∗ that varies as

M∗ ∝ t4/(n+3). (14.4.20)

The assumption that there is self-similar evolution corresponds to the assump-
tion that the two-point correlation function in the nonlinear regime ξ(x, t) is a
function of a single similarity variable s = x/tα, where the value of α is fixed
by Equation (14.4.19) if the nonlinear behaviour matches onto the growth in the
linear regime.
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This idea can be connected with the behaviour of velocities by writing an equa-
tion for the conservation of pairs of particles:

∂ξ(x, t)
∂t

+ 1
ax2

∂
∂x
[x2〈v21(x, t)〉(1+ ξ(x, t))] = 0 (14.4.21)

where 〈v21(x, t)〉 is the mean relative velocity of particles with separation x at
time t (Davis and Peebles 1977; Peebles 1980). Under the similarity transformation
mentioned above this equation assumes the form

−αsdξ
ds

+ 1
s2

d
ds
[s2〈v21(s)/atα−1〉(1+ ξ)] = 0. (14.4.22)

Now for very small separations it seems to be a reasonable ansatz to assume the
clumps ofmatter are stable so that on average there is no net change in separation,
i.e.

〈ṙ12〉 = ȧx12 + a〈ẋ12〉 = 0. (14.4.23)

This is called the stable clustering limit. Putting (14.4.23) into (14.4.22) and solving
for ξ yields

ξ(s)∝ s−γ, (14.4.24)

where γ turns out to be the same as γvir given in (14.4.6).

14.4.3 Scaling of the power spectrum

The idea that some form of self-similarity might apply to the evolution of cluster-
ing into the nonlinear regime led Hamilton et al . (1991) to construct an ingenious
model for how the power spectrum itself might evolve. In the linear regime P(k)
retains its initial shape, once clustering becomes strong its shape will change.
The basic idea is as follows. Let r0 be a Lagrangian comoving coordinate defined

by

r 30 =
∫ r
0
(1+ ξ)d3r = r 3(1+ ξ̄), (14.4.25)

where ξ̄ is themean correlation function interior to some radius r . The Lagrangian
radius r0 can be thought of as the size of a patch of the initial conditions that
collapses to a size r when the structure goes nonlinear. At early times r and r0
coincide but as time passes r shrinks relative to r0. In the linear regime ξ̄ 1
simply grows as the square of the linear growth law, i.e. if Ω0 = 1 it grows as t4/3

or, alternatively, as a2. If there is a stable clustering regime for ξ̄ � 1, then the
growth law must be ξ̄ ∝ a3 since the structures are fixed in physical coordinates.
These two limits motivate the suggestion that, anywhere between the two lim-

iting cases of linear and stable clustering, the evolution of ξ̄ might be described
by a kind of universal function of the initial mean correlation ξ̄0(r0) and a, i.e.

ξ̄ = F[a2ξ̄0(r0)], (14.4.26)
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where F[x] is unity for small x and proportional to x3/2 for large x. Hamilton et
al . (1991) compare this idea with the results of full numerical computations. They
find that it works reasonably well, and provide a fitting formula for F that works
in the intermediate regime. A subsequent study by Jain et al . (1995) refined and
extended this approach.

14.4.4 Comments

Although this analysis is very simplified, it does give results which agree, at least
qualitatively, with full N-body simulations of hierarchical clustering. It is possible
to extend the ideas of self-similarity further, to the analysis of higher-order corre-
lations. Although this latter approach yields what is called the hierarchical model
for reduced N-point correlation functions, which is described in Section 16.4,
this should not be thought of as a logical consequence of the highly approximate
model we have described in this section. This general picture of self-similar clus-
tering is also the motivation behind attempts to calculate the mass function of
condensed objects, which we describe in the next section.

14.5 The Mass Function

Themass function n(M), also called themultiplicity function, of cosmic structures
such as galaxies is defined by the relation

dN = n(M)dM, (14.5.1)

which gives the number of the structures in question per unit volume with mass
contained in the interval betweenM andM+dM . It is clear that the mass function
and the luminosity function, defined in Section 4.5, contain the same information
as long as one knows the value of the ratio M/L for the objects because

Φ(L) = n(M)dM
dL

� n(M)
〈
M
L



. (14.5.2)

This ratio, as we have mentioned in Chapter 4, is not known with any great cer-
tainty: for example, it seems to have values of order 10, 100 and 400 in solar units
for galaxies, groups of galaxies and clusters, respectively. It is in practice impos-
sible to recover the mass function from the observed luminosity function. On the
other hand, in many cosmological problems, above all in those involving counts of
objects at various distances, it is important to have an analytic expression for the
mass function. This must therefore be calculated by some appropriate theoretical
model. For this reason, Press and Schechter (1974) proposed a simple analytical
model to calculate n(M). This method is still used today and, despite simplicity
and several obvious shortcomings, is still the most reliable method available for
calculating this function analytically.
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In the Press–Schechter approach one considers a density fluctuation field
δ(x;R) ≡ δM, filtered on a spatial scale R corresponding to a mass M . In par-
ticular, if the density field possesses Gaussian statistics (see Section 13.7), the
distribution of fluctuations is given by

P(δM)dδM = 1

(2πσ 2
M)1/2

exp
(
− δ2M
2σ 2
M

)
dδM. (14.5.3)

The probability that at some point the fluctuation δM exceeds some critical value
δc is expressed by the relation

P>δc(M) =
∫∞

δc
P(δM)dδM; (14.5.4)

this quantity depends on the filter mass M and, through the time-dependence
of σM , on the redshift (or epoch). The probability P>δc is also proportional to
the number of cosmic structures characterised by a density perturbation greater
than δc, whether these are isolated or contained within denser structures which
collapse with them. For example, in the spherical collapse approximation of Sec-
tion 14.1, the value δc � 1.68, obtained by extrapolating linear theory, represents
structures which, having passed the phase ofmaximum expansion, have collapsed
and reached their maximum density. To find the number of regions with mass M
which are isolated, in other words surrounded by underdense regions, one must
subtract from P>δc(M) the quantity P>δc(M + dM), proportional to the number
of objects entering the nonlinear regime characterised by δc on the appropriate
mass scale. In making this assumption we have completely ignored the so-called
cloud-in-cloud problem, which is the possibility that at a given instant some object,
which is nonlinear on a scale M , can be later contained within another object, on
a larger mass scale. It is necessary effectively to take the probability in Equa-
tion (14.5.4) to be proportional to the probability that a given point has ever been
contained in a collapsed object on some scale greater than M or, in other words,
that the only objects which exist on a given scale are those which have just col-
lapsed. If an object has δ > δc when smoothed on a scale R, it will have δ = δc
when smoothed on some larger scale R′ and will therefore be counted again as
part of a higher level of the hierarchy. Another problem of this assumption is
also obvious: it cannot treat underdense regions properly and therefore, by sym-
metry, half the mass is not accounted for. In the Press–Schechter analysis this is
corrected by multiplying throughout by a factor 2, with the vague understanding
that this represents accretion from the underdense regions onto the dense ones.
The result is therefore that

n(M)M dM = 2ρm[P>δc(M)−P>δc(M+dM)] = 2ρm
∣∣∣∣dP>δcdσM

∣∣∣∣
∣∣∣∣dσMdM

∣∣∣∣dM. (14.5.5)
The formula (14.5.5) becomes very simple in the case where the RMS mass fluc-
tuation is expressed by a power law:

σM =
(
M
M0

)−α
(14.5.6)
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(the preceding relation is also approximately valid if one does not have a pure
power law but if α is interpreted as the effective index over the mass scale of
interest). In this case we obtain, from Equations (14.5.3), (14.5.4) and (14.5.5), that

n(M) =
√

2
π
δcα
σM

ρm
M2

exp
(
− δ2c
2σ 2
M

)
= 2√

π
ρmα
M2∗

(
M
M∗

)α−2
exp

[
−
(
M
M∗

)2α]
.

(14.5.7)

The mass function thus has a power-law behaviour with an exponential cut-off at
the scale

M∗ =
(
2

δ2c

)1/2α
M0. (14.5.8)

It is interesting to note that, for a constant value of the ratio M/L in Equa-
tions (14.5.2) and (14.5.7), one can obtain a functional form for the luminosity
function Φ(L) similar to that of the Schechter function introduced in Chapter 4;
to match exactly requires α = 1

2 , in other words a white-noise spectrum.
From Equation (14.5.7) it is also possible to derive the time-evolution of an

appropriately defined characteristic massMc(t). In the kinetic theory of fragmen-
tation and coagulation, one often assumes

Mc(t) =
∫∞
0 n(M ; t)M2 dM∫∞
0 n(M ; t)M dM

; (14.5.9)

the time-dependence comes from the evolution of σM . In the simplest case in
which σM is given by Equation (14.5.6) and is growing in the linear regime one
finds that, in an Einstein–de Sitter universe,

Mc(t) = π−1/2Γ
(
1+α
2α

)
M∗(t0)

(
t
t0

)2/3α
(14.5.10)

(Γ is the Gamma function), in accordance with Equation (14.4.3), as one would
expect.
The Press–Schechter theory has been very successful and influential because

it seems to describe rather well the behaviour of N-body simulations. Neverthe-
less, there are various assumptions made in this analysis which are extremely
hard to justify. First there is the assumption that bound structures essentially
form at peaks of the linear density field. While this must be some approximation
to the real state of affairs, it can hardly be exact, because matter moved signif-
icantly from its initial Lagrangian position during nonlinear evolution as clearly
demonstrated by the Zel’dovich approximation. In fact, the problem here is that
the Press–Schechter approach does not really deal with localised objects at all but
is merely a recipe for labelling points in the primordial density field. It is also
quite clear that the device of multiplying the probability (14.5.4) by a factor 2 to
obtain Equation (14.5.6) cannot be justified. Some more sophisticated analyses,
intended to tackle the cloud-in-cloud problem explicitly, have clarified aspects of
the problem. In particular, recent studies have elucidated the real nature of the
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Figure 14.2 Example of a merger tree. The trunk of the tree represents the final mass
of a halo and the branches show the various progenitors, with thickness representing the
mass of the merging object. Picture courtesy of Sean Cole.

factor 2 as an artefact of overcounting due to cloud-in-cloud effects (Bond et al .
1991).
The Press–Schechter model, despite all its failings, is well verified by compar-

ison with N-body simulations and is therefore a useful predictive tool in many
circumstances. Its greatest failing however is that it is inherently statistical: mass
points are merely labels and no attempt is made to follow the detailed evolution
of individual objects. To put this another way, two objects with the same mass
M at some time t may have built up through an entirely different series of merg-
ers of smaller objects, sometimes through dramatic encounters of two objects
with roughly equal masses, and sometimes through one object steadily consum-
ing much smaller ones. It is likely that these different merger histories give rise
to different kinds of object. This approach, pioneered by Lacey and Cole (1993) is
illustrated in Figure 14.2.

14.6 N-Body Simulations

The complexity of the physical behaviour of fluctuations in the nonlinear regime
makes it impossible to study the details exactly using analytical methods. The
methods we have described in Sections 15.1–15.5 are valuable for providing us
with a physical understanding of the processes involved, but they do not allow us
to make very detailed predictions to test against observations. For this task one
must resort to numerical simulation methods.
It is possible to represent part of the expanding Universe as a ‘box’ containing

a large number N of point masses interacting through their mutual gravity. This
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box, typically a cube, must be at least as large as the scale at which the Universe
becomes homogeneous if it is to provide a ‘fair sample’ which is representative of
the Universe as a whole. It is common practice to take the cube as having periodic
boundary conditions in all directions, which also assists in some of the compu-
tational techniques by allowing Fourier methods to be employed in summing the
N-body forces. A number of numerical techniques are available at the present
time; they differ, for the most part, only in the way the forces on each particle are
calculated. We describe some of the most popular methods here.

14.6.1 Direct summation

The simplest way to compute the nonlinear evolution of a cosmological fluid is to
represent it as a discrete set of particles, and then sum the (pairwise) interactions
between them directly to calculate the Newtonian forces, as mentioned above.
Such calculations are often called particle–particle, or PP, computations. With the
adoption of a (small) timestep, one can use the resulting acceleration to update
the particle velocity and then its position. New positions can then be used to
recalculate the interparticle forces, and so on.
One should note at the outset that these techniques are not intended to repre-

sent the motion of a discrete set of particles. The particle configuration is itself
an approximation to a fluid. There is also a numerical problem with summation
of the forces: the Newtonian gravitational force between two particles increases
as the particles approach each other and it is therefore necessary to choose an
extremely small timestep to resolve the large velocity changes this induces. A very
small timestep would require the consumption of enormous amounts of CPU time
and, in any case, computers cannot handle the formally divergent force terms
when the particles are arbitrarily close to each other. One usually avoids these
problems by treating each particle not as a point mass, but as an extended body.
The practical upshot of this is that one modifies the Newtonian force between
particles by putting

Fij = Gm2(xj − xi)
(ε2 + |xi − xj|2)3/2 , (14.6.1)

where the particles are at positions xi and xj and they all have the same massm;
the form of this equation avoids infinite forces at zero separations. The parameter
ε in Equation (14.6.1) is usually called the softening length and it acts to suppress
two-body forces on small scales. This is equivalent to replacing point masses by
extended bodies with a size of order ε. Since we are not supposed to be dealing
with the behaviour of a set of pointmasses anyway, the introduction of a softening
length is quite reasonable but it means one cannot trust the distribution of matter
on scales of order ε or less.
If we suppose our simulation contains N particles, then the direct summation

of all the (N−1) interactions to compute the acceleration of each particle requires
a total of N(N − 1)/2 evaluations of (14.6.1) at each timestep. This is the crucial
limitation of these methods: they tend to be very slow, with the computational
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time required scaling roughly as N2. The maximum number of particles for which
it is practical to use direct summation is of order 104, which is not sufficient for
realistic simulations of large-scale structure formation.

14.6.2 Particle–mesh techniques

The usual method for improving upon direct N-body summation for computing
inter-particle forces is some form of ‘particle–mesh’ (PM) scheme. In this scheme
the forces are solved by assigning mass points to a regular grid and then solving
Poisson’s equation on it. The use of a regular grid with periodic boundary con-
ditions allows one to use Fast Fourier Transform (FFT) methods to recover the
potential, which leads to a considerable increase in speed. The basic steps in a PM
calculation are as follows.
In the following,n is a vector representing a grid position (the three components

of n are integers); xi is the location of the ith particle in the simulation volume;
for simplicity we adopt a notation such that the Newtonian gravitational constant
G ≡ 1, the length of the side of the simulation cube is unity and the total mass is
also unity; M will be the number of mesh-cells along one side of the simulation
cube, the total number of cells being N ; the vector q is n/M . First we calculate
the density on the grid:

ρ(q) = M
3

N

N∑
i=1
W(xi − q), (14.6.2)

where W defines a weighting scheme designed to assign mass to the mesh. We
then calculate the potential by summing over the mesh

ϕ(q) = 1
M3

∑
q′
G(q − q′)ρ(q′) (14.6.3)

(where G is an appropriate Green’s function for the Poisson equation), compute
the resulting forces at the grid points,

F(q) = − 1
N
Dϕ, (14.6.4)

and then interpolate to find the forces on each particle,

F(xi) =
∑
q
W(xi − q)F(q). (14.6.5)

In Equation (14.6.4), D is a finite differencing scheme used to derive the forces
from the potential. We shall not go into the various possible choices of weighting
function W in this brief treatment: possibilities include ‘nearest gridpoint’ (NGP),
‘cloud-in-cell’ (CIC) and ‘triangular-shaped clouds’ (TSC).
We have written the computation ofϕ as a convolution but the most important

advantage of the PM method is that it allows a much faster calculation of the
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potential than this. The usual approach is to Fourier transform the density field
ρ, which allows the transform of ϕ to be expressed as a product of transforms
of the two terms in (14.6.3) rather than a convolution; the periodic boundary
conditions allow FFTs to be used to transform backwards and forwards, and this
saves a considerable amount of computer time. The potential on the grid is thus
written

ϕ(l,m,n) =
∑
p,q,r

Ĝ(p, q, r)ρ̂(p, q, r) exp
[
i
π
M
(pl+ qm+ rn)

]
, (14.6.6)

where the ‘hats’ denote Fourier transforms of the relevant mesh quantities.
There are different possibilities for the transformed Green’s function Ĝ, the most
straightforward being simply

Ĝ(p, q, r) = −1
π(p2 + q2 + r 2) , (14.6.7)

unless p = q = r = 0, in which case Ĝ = 0. Equation (14.6.6) represents a sum,
rather than the convolution in Equation (14.6.3), and its evaluation can there-
fore be performed much more quickly. The calculation of the forces in Equa-
tion (14.6.5) can also be speeded up by computing them in Fourier space. An FFT
is basically of order N logN in the number of grid points and this represents a
substantial improvement for large N over the direct particle–particle summation
technique. The price to be paid for this is that the Fourier summation method
implicitly requires that the simulation box has periodic boundary conditions: this
is probably the most reasonable choice for simulating a ‘representative’ part of
the Universe, so this does not seem to be too high a price.
The potential weakness of this method is the comparatively poor force resolu-

tion on small scales because of the finite spatial size of the mesh. A substantial
increase in spatial resolution can be achieved by using instead a hybrid ‘particle–
particle–particle–mesh’ method, which solves the short range forces directly (PP)
but uses the mesh to compute those of longer range (PM); hence PP + PM = P3M,
the usual name of such codes. Here, the short-range resolution of the algorithm is
improved by adding a correction to the mesh force. This contribution is obtained
by summing directly all the forces from neighbours within some fixed distance rs
of each particle. A typical choice for rs will be around three grid units. Alterna-
tively, one can use a modified force law on these small scales to assign any par-
ticular density profile to the particles, similar to the softening procedure demon-
strated in Equation (14.6.1). This part of the force calculation may well be quite
slow, so it is advantageous merely to calculate the short-range force at the start
for a large number of points spaced linearly in radius, and then find the actual
force by simple interpolation. The long-range part of the force calculation is done
by a variant of the PM method described earlier.
Variants of the PM and P3M technique are now the standard workhorses for

cosmological clustering studies. Different workers have slightly different inter-
polation schemes and choices of softening length. Whether one should use PM
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Figure 14.3 Numerical simulations from scale-free initial conditions with spectral index
n = 0. The time sequence runs from left to right and top to bottom. The development of
a filament–cluster–void network with an increasing characteristic size is clearly seen.

or P3M in general depends upon the degree of clustering one wishes to probe.
Strongly nonlinear clustering in dense environments probably requires the force
resolution of P3M. For larger-scale structure analyses, where one does not attempt
to probe the inner structure of highly condensed objects, PM is probably good
enough. One should, however, recognise that the short-range forces are not com-
puted exactly, even in P3M, so the apparent extra resolution may not necessarily
be saying anything physical.
Some simulations of structure formation in models with scale-free (i.e. n =

const.) initial conditions are shown in Figure 14.3. One can see that not only
does one form isolated ‘blobs’ which resemble those handled by the hierarchi-
cal model, the appearance of pancakes and filaments is also generic. In the CDM
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and HDMmodels, which are not scale free, the behaviour is rather simpler than the
scale-free simulations which can be analysed with the techniques of Section 14.4
and 14.5. In the HDM model, where the initial spectrum is cut off on small scales,
Zel’dovich pancakes form readily on supercluster scales, but that nonlinear pro-
cesses do not create galaxy-size fluctuations rapidly enough to agree with the
observations. The structure in a CDMmodel is much more clumpy on small scales
but smoother on large scales.

14.6.3 Tree codes

An alternative procedure for enhancing the force resolution of a particle code
whilst keeping the necessary demand on computational time within reasonable
limits is to adopt a hierarchical subdivision procedure. The generic name given
to this kind of technique is ‘tree code’. The basic idea is to treat distant clumps
of particles as single massive pseudo-particles. The usual algorithm involves a
mesh which is divided into cells hierarchically in such a way that every cell which
contains more than one particle is divided into 23 sub-cells. If any of the resulting
sub-cells contains more than one particle, that cell is subdivided again. There are
some subtleties involved with communicating particle positions up and down the
resulting ‘tree’, but it is basically quite straightforward to treat the distant forces
using the coarsely grained distribution contained in the high level of the tree,
while short-range forces use the finer grid. The greatest problem with such codes
is that, although they run quite quickly in comparisonwith particle–meshmethods
with the same resolution, they do require considerable memory resources. Their
use in cosmological contexts has so far therefore been quite limited, one of the
problems being the difficulty of implementing periodic boundary conditions in
such algorithms.

14.6.4 Initial conditions and boundary effects

To complete this section, we make a few brief remarks about starting conditions
for N-body simulations, and the effect of boundaries and resolution on the final
results.
Firstly, one needs to be able to set up the initial conditions for a numerical

simulation in a manner appropriate to the cosmological scenario under consid-
eration. For most models this means making a random-phase realisation of the
power spectrum – see Section 14.8. This is usually achieved by setting up parti-
cles initially exactly on the grid positions, then using the Zel’dovich approxima-
tion, Equation (14.2.1), to move them such as to create a density field with the
required spectrum and statistics. The initial velocity field is likewise obtained
from the primordial gravitational potential. One should beware, however, the
effects of the poor k-space resolution at long wavelengths. The assignment of
k-space amplitudes requires a random amplitude for each wave vector contained
in the reciprocal-space version of the initial grid. As the wave number decreases,
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the discrete nature of the grid becomes apparent. For example, there are only three
(orthogonal) wave vectors associated with the fundamentalmode of the box. When
amplitudes are assigned via some random-number generator, one must take care
that the statistically poor sampling of k-space does not lead to spurious features
in the initial conditions. One should use a simulation box which is rather larger
than themaximum scale at which there is significant power in the initial spectrum.
At the other extreme, there arises the question of the finite spacing of the grid.

This puts an upper limit, known as the Nyquist frequency, on the wavenumbers
k which can be resolved, which is defined by kN = 2π/d, where d is the mesh
spacing. Clearly, one should not trust structure on scales smaller than k−1N .
One is therefore warned that, although numerical methods such as these are

the standard way to follow the later nonlinear phases of gravitational evolution,
they are not themselves ‘exact’ solutions of the equations of motion and results
obtained from them can be misleading if one does not choose the resolution
appropriately.

14.7 Gas Physics

So far we have dealt exclusively with the behaviour of matter under its self-gravity.
We have ignored pressure gradient terms in the equation of motion of the matter
at all times after recombination. While this is probably a good approximation
in the linear and quasilinear regimes, when the Jeans mass is much smaller than
scales of cosmological interest, it is probably a very poor representation of the late
nonlinear phase of structure formation. As we shall see, hydrodynamical effects
are clearly important in determining the behaviour of the baryonic part of galaxies,
even if the baryons are only a small fraction of the total mass. Nonlinear hydro-
dynamical effects connected with the formation of shocks are also very important
in determining how a collapsing structure reaches virial equilibrium.

14.7.1 Cooling

One of the important things to explain in hierarchical clustering scenarios is the
existence of a characteristic scale of ∼ 1011M� in the mass spectrum of galaxies.
Because gravity itself does not pick out any scale, some other physical mechanism
must be responsible. Since only the baryonic part of the galaxy can be seen, and it
is only this part which is known to possess characteristic properties, it is natural
to think that gas processesmight be involved. A good candidate for such a process
is the cooling of the gas forming the galaxy.
Following Rees and Ostriker (1977), let us consider a simplemodel of a galaxy as

a spherical gas cloud (i.e. no non-baryonic material) in the manner of Section 14.1.
After collapse and violent relaxation (the process which converts the radial col-
lapse motion into random ‘thermal’ motions) this cloud will be supported in equi-
librium at its virial radius R and will have a temperature T ∝ GMµ/R, where µ
is the mean molecular weight. If this temperature is high, as it will be for inter-
esting mass scales, the cloud will be radiating and therefore cooling. The balance
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between pressure support and gravity which determines the size of the object
depends on two characteristic timescales: the cooling time

tcool = −E
Ė
� 3ρkBT
2µΛ(T)

, (14.7.1)

and the dynamical time, defined to be the free-fall collapse time for a sphere of
mass M and radius R,

tdyn = π
2

(
R3

2GM

)1/2
, (14.7.2)

where ρ is the mean baryon density and Λ(T) in Equation (14.7.1) is the cooling
rate (energy loss rate per unit volume per unit time) for a gas at temperature T
(Λ is tabulated in standard physics texts for different kinds of gas). There are
three main contributions to cooling in a hydrogen–helium plasma which is what
we expect to have in the case of galaxy formation: free–free (bremsstrahlung)
radiation, recombination radiation from H and He, and Compton cooling via the
cosmic microwave background. This last one is efficient only if z > 10 or so. Since
it is not known whether galaxy formation might have taken place at such high
redshifts, this may play a role but for simplicity we shall ignore it here.
The two timescales tdyn and tcool, together with the expansion timescale τH =

H−1, determine how the protogalaxy cools as it collapses. If tcool > τH, then cool-
ing cannot have been important and the cloud will have scarcely evolved since its
formation. If τH > tcool > tdyn, then the gas can cool on a cosmological timescale,
but the fact that it does so more slowly than the dynamical characteristic time
means that the cloud can adjust its pressure distribution to maintain the support
of the cooling matter. There is thus a relatively quiescent quasi-static collapse on
a timescale tcool. The last possibility is that tcool < tdyn. Now the cloud cools so
quickly that dynamical processes are unable to adjust the pressure distribution in
time: pressure support will be lost and the gas undergoes a rapid collapse on the
free-fall timescale, accompanied by fragmentation on smaller and smaller scales
as instabilities develop in the cloud which is behaving isothermally.
It is thought that the condition tcool < tdyn is what determines the characteristic

mass scale for galaxies. Only when this criterion is satisfied can the gas cloud
collapse by a large factor and fragment into stars which allow the cloud to be
identified as a galaxy. Furthermore, if structure formation proceeds hierarchically,
the gas must cool on a timescale at least as small as tdyn, otherwise it will not
be confined in a bound structure on some particular scale but will instead be
disrupted as the next level of the hierarchy forms.
Let us now add non-baryonic matter into this discussion. What changes here

is that the dynamical timescale for a collapsing cloud will be dominated by the
dark matter while cooling is enjoyed only by the gas. Let us assume a spherical
collapse model again. Notice that the dynamical timescale (14.7.2) is essentially
the time taken for a perturbation to collapse from its maximum extent which
can be identified as the turnaround radius Rm in Section 15.1. Putting in some
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numbers one finds that

tdyn � 1.5× 109
(
M
M�

)−1/2( Rm
200 kpc

)3/2
years. (14.7.3)

One can estimate the cooling timescale by assuming that gas makes up a fraction
Xb of the total massM and that it is uniformly distributed within the virial radius
which will be Rm/2. We then take the gas temperature to be the same as the virial
temperature of the collapsed object: T � 2GMµ/5kBRm. We also assume that the
gas has not been contaminated by metals from an early phase of star formation
(metals can increase the cooling rate and thus lower the cooling time consider-
ably), and therefore adopt the appropriate value of Λ(T) for a pure hydrogen
plasma at temperature T . Using Equation (14.7.1) we find that

tcool � 2.4× 108X−1
b

(
M
M�

)1/2( Rm
200 kpc

)3/2
years, (14.7.4)

so that the cooling criterion is satisfied when

M < M∗ � 6.4× 1012X−1
b M�, (14.7.5)

which, for Xb � 0.05, gives M∗ � 3 × 1011M�. While this theory therefore gives
a plausible account of the characteristic mass scale for galaxies, it is obviously
extremely simplified. Hydrodynamical effects may be important in many other
contexts, such as cluster formation, the collapse of pancakes and also the feed-
back of energy from star formation into the intergalactic medium. A detailed
theory of the origin of structure including gas dynamics, dissipation and star
formation is, however, still a long way from being realised.

14.7.2 Numerical hydrodynamics

In the above we discussed an example where gas pressure forces are important
in the formation of cosmic structure. Understanding of these effects is highly
qualitative and applicable only to simple models. In an ideal world, one would
like to understand the influence of gas pressure and star formation in a general
context. Effectively, this means solving the Euler equation, including the relevant
pressure terms, self-consistently. The appropriate equation is

∂V
∂t

+ ȧ
a
V + 1

a
(V · ∇x)V = −1

a
∇xϕ − 1

aρ
∇xp. (14.7.6)

The field of cosmological hydrodynamics is very much in its infancy, and it is fair
to say that there are no analytic approximations that can be implemented with
any confidence in this kind of analysis. The only realistic hope for progress in
the near future lies with numerical methods, so we describe some of the popular
techniques here.
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In smoothed-particle hydrodynamics (SPH) one typically represents the fluid as
a set of particles in the same way as in the N-body gravitational simulations
described in Section 14.6. Densities and gas forces at particle locations are thus
calculated by summing pairwise forces between particles. Since pressure forces
are expected to fall off rapidly with separation, above some smoothing scale h
(see below), it is reasonable to insert the gas dynamics into the part of a parti-
cle code that details the short-range forces such as the particle–particle part of a
P3M code. It is, however, possible to include SPH dynamics also in other types of
simulation, including tree codes.
One technique used to insert SPH dynamics into a P3M code is to determine

local densities and pressure gradients by a process known as kernel estimation.
This is essentially equivalent to convolving a field f(x) with a filter function W
to produce a smoothed version of the field:

fs(r) =
∫
f(x)W(x − r)d3x, (14.7.7)

where W contains some implicit smoothing scale; one possible choice of W is a
Gaussian. If f(x) is just the density field arising from the discrete distribution of
particles, then it can be represented simply as the sum of delta-function contri-
butions at each particle location xi and one recovers Equation (14.6.2). We need
to represent the pressure forces in the Euler equation: this is done by specifying
the equation of state of the fluid p = (γ − 1)ερ, where ε is the thermal energy, ρ
the local density and p the pressure. Now one can write the pressure force term
in Equation (14.7.6) as

−∇p
ρ

= −∇
(
p
ρ

)
− p
ρ2

∇ρ. (14.7.8)

The gradient of the smoothed function fs can be written

∇fs(r) =
∫
f(x)∇W(x − r)d3x, (14.7.9)

so that the gas forces can be obtained in the form

Fgasi = −
(∇p
ρ

)
i
∝ −

∑
j

(
pi
ρ2i

+ pj
ρ2j

)
∇W(rij). (14.7.10)

The form of Equation (14.7.10) guarantees conservation of linear and angular
momentum when a spherically symmetric kernelW is used. The adiabatic change
in the internal energy of the gas can similarly be calculated:

dεi
dt

∝ Pi
ρ2i

∑
j
∇W(rij) · vij, (14.7.11)

where vij is the relative velocity between particles. For collisions at a high Mach
number, defined as the ratio of any systematic velocity to the thermal random
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velocity, thermal pressure will not prevent the particles from streaming freely,
but in real gases there is molecular viscosity which prevents interpenetration of
gas clouds. This is modelled in the simulations by introducing a numerical viscos-
ity, the optimal form of which depends upon the nature of the simulation being
attempted.
The advantage of particle-based methods is that they are Lagrangian and con-

sequently follow the motion of the fluid. In practical terms, this means that most
of the computing effort is directed towards places where most of the particles are
and, therefore, where most resolution is required. As mentioned above, particle
methods are the standard numerical tool for cosmological simulations. Classical
fluid dynamics, on the other hand, has usually followed an Eulerian approach
where one uses a fixed (or perhaps adaptive) mesh. Codes have been developed
which conserve flux and which integrate the Eulerian equations of motion rapidly
and accurately using various finite-difference approximation schemes. It has even
proved possible to introduce methods for tracking the behaviour of shocks accu-
rately – something which particle codes struggle to achieve. Typically, these codes
can treat many more cells than an SPH code can treat particles, but the resolution
is usually not so good in some regions because the cells will usually be equally
spaced rather than being concentrated in the interesting high-density regions.
An extensive comparison between Eulerian and Lagrangian hydrodynamical

methods has recently been performed, which we recommend to anyone thinking
of applying these techniques in a cosmological context. Each has its advantages
and disadvantages. For example, density resolution is better in the state-of-the-
art Lagrangian codes, and the thermal accuracy better in the Eulerian codes. Con-
versely, Lagrangian methods have poor accuracy in low-density regions, presum-
ably due to statistical effects, while the Eulerian codes usually fail to resolve the
temperatures correctly in high-density regions due to the artificially high numer-
ical viscosity in them.

14.8 Biased Galaxy Formation

It should be obvious by now that the complexities of nonlinear gravitational evo-
lution, together with the possible influence of gas-dynamical processes on galaxy
formation, mean that a full theory of the formation of these objects is by no
means fully developed. Structure on larger scales is less strongly nonlinear, and
therefore is less prone to hydrodynamical effects, so may be treated fairly accu-
rately using linear theory as long as σM  1 or, better still, using approximation
methods such as the Zel’dovich and adhesion approximations. The problem is
that, when one seeks observational data with which to compare theoretical pre-
dictions, these data invariably involve the identification of galaxies. Even if we
give up on the task of understanding the details of the galaxy-formation process,
we still need to know how to relate observations of the large-scale distribution of
galaxies to that of the mass.
In Section 13.9 we discussed the Poisson clustering model, which is a statistical

statement of the form ‘galaxies trace the mass’. In this model the two-point cor-
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relation function of galaxies is equal to the covariance function of the underlying
density field. In recent years, however, it has become clear that this is probably not
a good representation of reality. In the spirit of the spherical collapse model one
might imagine that galaxies should form not randomly sprinkled around accord-
ing to the local density of matter, but at specific locations where collapse, cooling
and star formation can occur. Obvious sites for protostructures would therefore
be peaks of the density field, rather than randomly chosen sites. This simple idea,
together with the assumption that the large-scale cosmological density field is
Gaussian (see Section 14.8), led Kaiser (1984) (in a slightly different context; see
Section 16.5) to suggest a biased galaxy formation, so that the galaxy correlation
function and the matter autocovariance function are no longer equivalent. The
way such a bias might come about is as follows. Suppose the density field δM,
smoothed on some appropriate mass scale M to define a galaxy, is Gaussian and
has variance σ 2

M . The covariance function ξ(r) of δM is

ξ(r) = 〈δM(x)δM(x′)〉, (14.8.1)

where the average is taken over all spatial positionsx andx′ such that |x−x′| = r .
If galaxies trace the mass, then the two-point correlation function of galaxies
ξgg(r) coincides with ξ(r). If galaxies do not trace the mass, this equality need
not hold. In particular, imagine a scenario where galaxies only form from high-
density regions above some threshold δc = νσM , where ν is a dimensionless
threshold. The existence of such a threshold is qualitatively motivated by the
spherical model of collapse, described in Section 14.1, within which a linear value
of δc � 1.68 would seem to be required for structure formation. To proceed
we need to recall that, for such a Gaussian field, all the statistical information
required to specify its properties is contained in the autocovariance function ξ(r).
It is straightforward to calculate the correlation function of points exceeding δc
using the Gaussian prescription because the probability of finding two regions
separated by a distance r both above the threshold will be just

Q2 =
∫∞

δc

∫∞

δc
P2(δ1, δ2)dδ1 dδ2. (14.8.2)

Now, as explained in Section 13.7, the N-variate joint distribution of a set of δi
can be written as a multivariate Gaussian distribution: for the case where N = 2,
which is needed in Equation (14.8.2), using the substitution δi = νiσ and w(r) =
ξ(r)/σ 2, we find

P2(ν1, ν2) = 1
2π

1√
1−w2(r)

exp
(
−ν

2
1 + ν22 − 2w(r)ν1ν2

2[1−w2(r)]

)
. (14.8.3)

The two-point correlation function for points exceeding νc = δc/σ is then

ξνc =
Q2

Q2
1

− 1, (14.8.4)
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where Q1 = P>δc ; see Equation (14.5.4). The exact calculation of the integrals in
this equation is difficult but various approximate relations have been obtained.
For large νc and small w we have

ξνc � ν2cw(r), (14.8.5)

while another expression, valid when w is not necessarily small, is

ξνc � exp[ν2cw(r)]− 1. (14.8.6)

Kaiser initially introduced thismodel to explain the enhanced correlations of Abell
clusters compared with those of galaxies; see Section 16.5. Here the field δ is ini-
tially smoothed with a filter of radius several Mpc to pick out structure on the
appropriate scale. If galaxies trace the mass, and so have ξgg(r) � ξ(r), then the
simple relation (14.8.5) explains qualitatively why cluster correlations might have
the same slope, but a higher amplitude than the galaxy correlations. This enhance-
ment is natural because rich clusters are defined as structures within which the
density of matter exceeds the average density by some fairly well-defined factor
in very much the way assumed in this calculation.
This simple argument spawned more detailed analyses of the statistics of Gaus-

sian random fields, culminating in the famous ‘BBKS’ paper of Bardeen et al .
(1986), which have refined and extended, while qualitatively confirming, the above
calculations. The interest in most of these studies was the idea that galaxies them-
selvesmight form only at peaks of the linear density field (this time smoothedwith
a smaller filtering radius). If galaxies only form from large upward fluctuations in
the linear density field, then they too should display enhanced correlations with
respect to the matter. This seemed to be the kind of bias required to reconcile
the standard CDM model with observations of galaxy-peculiar motions and also
the cause of the apparent discrepancy between dynamical estimates of the mass
density of the Universe of around Ω0 � 0.2 when the theoretically favoured value
is Ω0 � 1. We shall discuss the question of velocities in detail in Chapter 18 and
we have referred to it also in Chapter 4. Nevertheless, some comments here are
appropriate. The velocity argument can be stated simply in terms of a sort of cos-
mic virial theorem. If galaxies trace the mass, and have correlation function ξ(r)
and mean pairwise velocity dispersion at a separation r equal to v2(r), then this
theorem states that

Ω ∝ ξ(r)(v/r)2, (14.8.7)

with a calculable constant of proportionality; see Section 18.5 for details.
There are problems with this theorem in the context of standard CDM. First,

if one runs a numerical simulation of CDM to the point when the correlation
function of the mass has the right slope compared with that of the observations,
then the accompanying velocities v are far too high. A low-density CDM seems
to be a much better bet in this respect, but this may be because the slope of the
correlation function is not a very good way to determine the present epoch in a
simulation. The same thing, however, seems to happen in our Universe, where the
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observed correlation function and the observed pairwise peculiar motions give
Ω � 0.2. One way out of this, indeed the obvious way out apart from the fact that
it appears to contradict inflation, is to have Ω � 0.2 and leave it at that. There is
another way out, however, which involves bias of the sort discussed above. Taking
(14.8.6) as a qualitative model, one might argue that in fact ξ(r) is wrong by a
factor ν2/σ 2

M and, if this bias is large, one can reconcile a given v with Ω = 1. A
bias factor b, defined by

ξ(r)galaxies = b2ξ(r)mass, (14.8.8)

of around b � 1.5–3 seems to be required to match small-scale clustering and
peculiar velocity data with the standard CDM model. Notice also that true density
fluctuations are smaller than the apparent fluctuations in counts of galaxies, so
that fluctuations in the microwave background are smaller by a factor ∼ 1/b in
this picture than they would be if galaxies trace the mass.
The parameter b often arises in the cosmological literature to represent the

possible difference between mass statistics and the statistics of galaxy clustering.
The usual definition is not (14.8.8) but rather

b2 = σ
2
8 (galaxies)
σ 2
8 (mass)

, (14.8.9)

whereσ 2
8 represents the dimensionless variance in either galaxy counts ormass in

spheres of radius 8h−1 Mpc. This choice is motivated by the observational result
that the variance of counts of galaxies in spheres of this size is of order unity, so
that b � 1/σ8(mass). Unless stated otherwise, this is what we shall mean by b in
the rest of this book. Many authors use different definitions, e.g.

δN
N

= bδρ
ρ
, (14.8.10)

which is called the linear bias model. While a relation of the form (14.8.10) clearly
entails (14.8.9) and (14.8.8), it does not follow from them, so these definitions are
not equivalent. While there is little motivation, other than simplicity, for suppos-
ing the bias parameter to be a simple constant multiplier on small scales, it can
be shown that, as long as the bias acts as a local function of the density, the form
(14.8.8) should hold on large scales, even if the biasing relationship is complicated
(Coles 1993).
Alternatives to (14.8.10), which are not equivalent, include the high-peak model

and the various local-bias models (Coles 1993). Non-local biases are possible, but
it is rather harder to construct such models (Bower et al . 1993). If one is prepared
to accept an ansatz of the form (14.8.10), then one can use linear theory on large
scales to relate galaxy-clustering statistics to those of the density fluctuations,
e.g.

Pgal(k) = b2P(k), (14.8.11)
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as well as the form (14.8.8). This approach is the one most frequently adopted
in practice, but the community is becoming increasingly aware of its limita-
tions. A simple model of this kind simply cannot hope to describe realistically
the relationship between galaxy formation and environment (Dekel and Lahav
1999).
One should say, however, that there is no compelling reason a priori to believe

that galaxy formation should be restricted to peaks of particularly high initial
density. It is true that peaks collapsing later might produce objects with a lower
final density than peaks collapsing earlier, but these could (and perhaps should)
still correspond to galaxies. Some astrophysical mechanism must be introduced
which will inhibit galaxy formation in the lower peaks. Many mechanisms have
been suggested, such as the possibility that star formation may produce strong
winds capable of blowing the gas out of shallow potential wells, thus suppressing
star formation, but none of these are particularly compelling. We discuss briefly
how such a mechanism might also explain the morphological difference between
elliptical and spiral galaxies in the next section. It is even possible that some
large-scale modulation of the efficiency of galaxy formation might be achieved,
perhaps by cosmic explosions or photoionisation due to quasars. Such a mod-
ulation would not be local in the sense discussed above and may well lead to
a nonlinear bias parameter on large scales. We shall see later, however, in Chap-
ter 17 that the latest clustering observations and the COBEmicrowave background
fluctuations do not seem to support the idea of a strong bias, at least not in a CDM
model.
At the present time b has a somewhat dubious status in the field of structure

formation. The best way to think of b is not as describing some specific way of
relating galaxies to mass, such as in (14.8.10), but as a way of parametrising our
ignorance of galaxy formation in much the same way as one should interpret the
mixing-length parameter in the theory of stellar convection. Aswe havementioned
already, to understand how this occurs we need to understand not only gravita-
tional clustering but also star formation and gas dynamics. All this complicated
physics is supposed to be contained in the parameter b.

14.9 Galaxy Formation

As we mentioned in Chapter 4, galaxies possess angular momentum. Its amount
depends on themorphological type: it is maximum for spirals and S0 galaxies, and
minimum for ellipticals. The angular momentum of our Galaxy, a fairly typical
spiral galaxy of mass M � 1011M�, is J � 1.4× 1074 cm2 g s−1. The conventional
parametrisation of galactic angular momenta is in terms of the ratio between the
observed angular velocity, ω, and the angular velocity which would be required
to support the galaxy by rotation alone, ω0:

λ ≡ ω
ω0

� J/(MR2)
(GM/R3)1/2

, (14.9.1)
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where the dimensionless angular momentum parameter λ is typically as high as
λ � 0.4 for spirals, but only λ � 0.05 for ellipticals. It is also probable that clusters
of galaxies have some kind of rotation, large for the irregular open clusters like
Virgo and smaller for the compact rich clusters like Coma.
The Kelvin circulation theorem guarantees that, in the absence of dissipative

processes, an initially irrotational velocity field must remain so. The gravitational
force can only create velocity fields in the form of potential flows which have zero
curl. For a long time, therefore, the idea was held that the vorticity one appears to
see now in galaxies must have been present in the early universe. This idea was
developed much further in the theory of galaxy formation by cosmic turbulence
which was at its most popular in 1970; this theory, however, predicted very high
fluctuations in the temperature of the cosmic microwave background and some
additional implausible assumptions were made. For this reason this scenario was
rapidly abandoned and we mention it now only out of historical interest.
The origin of the rotation of galaxies within the framework of the theory of

gravitational instability is described by a model, the first version of which was
actually created by Hoyle (1949) and which has been subsequently modified by
various authors and adapted to the various cosmogonical scenarios in fashion
over the years (e.g. Efstathiou and Jones 1979). This model attributes the acquisi-
tion of angular momentum by a galaxy to the tidal action of protogalactic objects
around it, at the epoch when the protogalaxy is just about to form a galaxy. At
this epoch, protogalaxies have relatively large size (they will be close to their
maximum expansion scale) and have a relatively small spatial separation com-
pared with their size. Analytic calculations and N-body experiments show that
this mechanism does indeed give a plausible account of the distribution of angu-
lar momentum observed in galactic systems.
This theory is valid in both top-down and bottom-up scenarios of structure for-

mation. There is also another possibility: the circulation theorem is not valid in the
presence of dissipative processes such as those accompanying the formation and
propagation of a shock wave after the collapse of a pancake; the potential motion
of the gas can become rotational after the gas has been compressed by a shock
wave. This mechanism has not yet been analysed in great detail partly because of
the difficulty in dealing with nonlinear hydrodynamics and partly because of the
apparent success of the alternative, simpler scenario based on tidal forces.
In the tidal action model the acquisition of angular momentum by a galaxy

takes place in two phases. The first phase commences at the moment a fluctua-
tion begins to grow after recombination and ends when it reaches its maximum
expansion, at tm; the second phase lasts from then until the present epoch. This
second phase is thought to be when the galaxy acquires its own individuality
beginning at the stage it collapses, undergoes violent relaxation and reaches virial
equilibrium. It can be shown that in the first phase the angular momentum of the
perturbation grows roughly like t5/3, due to the effects of deviations from the
Hubble flow caused by the various sub-condensations which make up the pro-
tostructure in question. In the second phase the protogalaxy, which will not in
general be spherical, is subject to a torque due to other protogalaxies in its vicin-
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ity. One finds that this tidal effect, due to all the surrounding objects, increases
the angular momentum of the galaxy according to J̇ ∝ t−2, decreasing with time
because the expansion of the Universe carries the protogalaxies away from each
other.
The question of the angular momentum of galaxies is intimately related to

the origin of the morphological types, discussed in Chapter 4. A full theory of
the formation of galaxies is complicated by gas pressure effects, as outlined in
Section 14.6, and is yet to be elucidated. Possible answers to both the angular
momentum and morphology questions may, however, come from the idea that
dissipation is important for spiral galaxies but not for ellipticals. One can con-
nect this to the problem of angular momentum as follows. The tidal action model
can generate a value of λ � 0.05–0.1, not quite large enough to account for spiral
galaxies but comfortable for ellipticals. It seems clear for spirals that dissipation
must be important to explain why the luminous matter in a galaxy is concen-
trated in the middle of its dark halo. If the gas collapses through cooling, as
described in Section 14.7, then its binding energy will increase while the mass
and angular momentum are conserved. If the binding energy of a spherical cloud
is E � GM2/R, as usual, then E ∝ 1/R as the gas cools and shrinks. This means
that λ∝ R−1/2, so cooling can increase the λ parameter. The problem with this is
that, if the galaxy is all baryonic, the rate of increase is rather slow. If, however,
there is a dominant dark halo, one can get a much more rapid increase in λ and
a value of � 0.4–0.5 is reasonable.
The problem of formation of elliptical galaxies is less well understood. The value

of their angular momentum seems to be accounted for by the tidal action model
if there is no significant dissipation, but how can it be arranged for spirals and
ellipticals to be thus separated? A possible explanation for this is that ellipticals
formed earlier, when the Universe was denser and star formation (perhaps) more
efficient. One might therefore be motivated towards an extension of the idea of
biased galaxy formation (Section 14.8) in which the very highest density peaks,
which collapse soonest, become ellipticals, while the smaller peaks become spi-
rals. The detailed physics of the dividing line between these two morphologies,
which we have supposed may be crudely delineated by the efficiency of dissipa-
tion, is still very unclear. An alternative idea is that perhaps all galaxies form like
spiral galaxies, but that ellipticals are made from merging of spirals. This would
seem to be plausible, given that ellipticals occur predominantly in dense regions.
There are also problems with this picture. It is not clear whether ellipticals have
the correct density profiles for them to be consistent with mergers of disc galaxies
if the mergers are dissipationless. This aspect would have to be explored using
numerical simulations.
The difficulty of understanding the complex effects of heating, dissipation and

star formation within a continuously evolving clustering hierarchy has spawned
the field of semi-analytic galaxy formation. This approach encodes the complex
physics of galaxy formation in a set of relatively simple rules applied within a
merger-tree description of the formation and merging of dark-matter haloes. The
basic picture described in this model is that gas falls into the haloes whereupon it
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is shock-heated up to the virial temperature of the halo. It then undergoes radia-
tive cooling. The cold gas component thus formed collapses into a rotationally
supported disc and provides a reservoir of material that forms stars. The stars
thus formed inject energy into the gas through supernova explosions, which also
add a sprinkling of heavy elements to the mix. Crucial to this scenario is the
assumption that the basic galaxy unit is disc. Elliptical and spheroidal galaxies
are made through ‘major mergers’ of discs as suggested above. See Baugh et al .
(1998) for a view of the state of this particular art.

14.10 Comments

It is clear that this chapter leaves many questions unanswered. We have shown
that, while it is possible to use analytical methods and numerical simulations
to understand the behaviour of density perturbations in the nonlinear regime,
the complications of gas pressure, dissipation and star formation are still not
fully understood. This means that we do not have an entirely satisfactory way of
identifying sites of galaxy formation and every attempt to compare calculations
with observations must take account of this difficulty. The semianalytic approach
has been a major advance in this area but it is still not clear how fully it can
account for the observed properties of galaxies of different types.
We also have the problem that, in order to run anN-body simulation or perform

an analytical calculation, one needs to normalise the spectrum appropriately. In
the past this was done by matching properties of the density fluctuation field
to properties of galaxy counts. In more recent times, after the COBE result, the
usual approach has become to normalise models to the microwave background
anisotropy they predict. Even this latter method still carries some uncertainty,
as we shall see in Chapter 17. To this one can add the problem of not knowing
the form and quantity of any dark matter, which alters the primordial spectrum
before the nonlinear phase is reached. Clearly there is an enormous parameter
space to be explored and the tools we have to probe it theoretically are relatively
crude.
Nevertheless, there has been substantial progress in recent years in the field of

structure formation, and there is considerable cause to be optimistic about the
future. Numerical techniques are being refined, the computational power avail-
able is steadily increasing and powerful analytical extensions of those we have
discussed in this chapter have also been developed. On the observational side,
tens of thousands of galaxy redshifts have been compiled over the last three
decades. These allow us to probe the distribution of luminous matter on larger
and larger scales; models for the bias are used to translate this into the mass
distribution. New methods we shall describe in the following chapters have been
devised to minimise the bias-dependence of tests of structure-formation scenar-
ios. And finally, the microwave background fluctuations on small angular scales
may allow us to test these theoretical ideas in a much more rigorous way than
has hitherto been possible.
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Bibliographic Notes on Chapter 14

Analytic nonlinear methods for large-scale structure are reviewed by Shandarin
and Zel’dovich (1989) and Sahni and Coles (1995). The Burgers equation is dis-
cussed by Gurbatov et al . (1989). The basics of N-body simulation are discussed
by Hockney and Eastwood (1988) in a general context. Numerical N-body tech-
niques in cosmology are discussed by Efstathiou et al . (1985) and Bertschinger
and Gelb (1991), while SPH variants are covered by Evrard (1988). For a discus-
sion of Eulerian hydrodynamics, see Cen (1992).

Problems

1. For a Universe with Ω0 ≠ 1, show that the generalisation of Equation (14.1.8) is

χ(Ω0) = π2

4Ω0(H0t0)2
.

2. Show that the Zel’dovich approximation is an exact solution of the one-dimensional
gravitational clustering problem provided no trajectories have crossed. (Hint: sub-
stitute the Zel’dovich trajectories into the Euler equation for the problem and show
that the potential gradients implied are consistent with the Poisson equation.)

3. Find the Zel’dovich displacement field corresponding to a spherical ‘top-hat’ density
perturbation like that discussed in Section 14.1. Show that the Zel’dovich approxi-
mation predicts the formation of a singularity (i.e. that δ→∞ at a finite time).

4. Prove the relation (14.4.19).

5. The self-similar evolution described in Section 14.4.2 requires that very large- and
very small-scale velocities give convergent contributions to the peculiar velocity
field. What restriction does this place on the spectral index, n, of the density fluc-
tuations?

6. Derive the approximate results (14.8.5) and (14.8.6).
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Models of
Structure
Formation

15.1 Introduction

In the preceding four chapters we have laid out the basic ingredients of the the-
ory of cosmological structure formation according to the standard paradigm. The
essential components of this recipe are primordial density perturbations, grav-
itational instability and dark matter, but many variations on this basic theme
are viable. Despite the great progress that has undoubtedly been made, further
steps are difficult because of uncertainties in the cosmological parameters, in the
modelling of relevant physical processes involved in galaxy formation, and in the
uncertain relationship between galaxies and the underlying distribution ofmatter.
Our aim in this chapter is to explain how the various components we have

described come together in ‘models’ of structure formation that can be tested
against observations. This will involve taking stock, and reducing the rather
detailed physical discussion we have followed so far to a few key ideas and model
parameters. Our role is not to advocate one particular mix of ingredients over
another, but to point out how these different ingredients might be constrained or
ruled out.
For example, as we have seen in Chapter 10, the expansion of the Universe ren-

ders the cosmological version of gravitational instability very slow, a power law in
time rather than the exponential growth that develops in a static background. This
slow rate has the important consequence that the evolved distribution of mass
still retains significant memory of the initial state. If the perturbations were to
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grow exponentially, all memory of the initial conditions would be rapidly erased.
This, in turn, has two consequences for theories of structure formation. One is
that a detailed model must entail a complete prescription for the form of the ini-
tial conditions, and the other is that observations made at the present epoch allow
us to probe the form of the primordial fluctuations and thus test the theory.

15.2 Historical Prelude

Progress in the field of structure formation during the 1970s was characterised
by the construction of scenarios for the origin of cosmic protostructure in two-
component models containing baryonic material and radiation. (As we shall see,
the cosmological neutrino background does not greatly influence the evolution
of perturbations in matter and radiation, as long as the neutrinos are mass-
less.) There can exist two fundamental modes of perturbations in such a two-
component system: adiabatic perturbations, in which the matter fluctuations,
δm = δρm/ρm, and radiation fluctuations, δr = δρr/ρr, are coupled together so
that 4δm = 3δr; and isothermal perturbations, which involve only fluctuations in
the matter component, i.e. δr = 0. These two kinds of perturbation led to two
distinct scenarios for galaxy formation.
In the adiabatic scenario the first structures to form are on a large scale,

M � 1012–1014M�, corresponding to clusters or superclusters of galaxies. Galax-
ies then form by successive processes of fragmentation of these large objects. For
this reason the adiabatic scenario is also called a ‘top-down’ scenario.
On the other hand, in the isothermal scenario the first structures, protoclouds,

are formed on a much smaller mass scale, M � 105–106M�, and then structure
on larger scales is formed by the successive effect of gravitational instability, a
process known as hierarchical clustering. For this reason, the isothermal scenario
is described as ‘bottom-up’.
The adiabatic and isothermal scenarios were in direct competition with each

other during the 1970s. One aspect of this confrontation was that the adiabatic
scenario was chiefly championed by the great school of Russian astrophysicists
led by Zel’dovich in Moscow, and the isothermal model was primarily an Amer-
ican affair, advocated in particular by Peebles and the Princeton group. In fact,
neither of these adversaries actually won the battle: because of several intrinsic
difficulties, the baryonic models were overtaken in the 1980s by models involving
non-baryonic dark matter.
The main difficulty of the adiabatic scenario was that it predicted rather large

angular fluctuations in the temperature of themicrowave background, which were
in excess of the observational limits. We can illustrate the problem in a simple
qualitative manner to bypass the complications of the kinetic approach described
above. In a universe made only of baryons with Ωb � 1, photons and massless
neutrinos, the density fluctuation δm(zrec)M > M(a)D (zrec) must have amplitude
greater than the growth factor between recombination and t0, which we calledAr0.
From Section 11.4, one can see that, ifΩ � 1, thenAr0 � zrec � 103; if we are going
to produce nonlinear structure by the present epoch, the density fluctuations
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must have amplitude at least unity by now. Thus, one requires δm(zrec) � 10−3

or higher. But these fluctuations in the matter are also accompanied in the adi-
abatic picture by fluctuations in the radiation which lead to fluctuations in the
microwave background temperature δr � 3δT/T � 10−3, greater than the obser-
vational limits on the appropriate scale by more than two orders of magnitude.
Moreover, if one recalls the calculations of primordial nucleosynthesis in the stan-
dard model, one cannot have Ωb as large as this, and a (generous) upper bound
is given by Ω � Ωb � 0.1. This makes things even worse: in an open universe the
growth factor is lower than a flat universe: Ar0 � zrec/z(t∗) � 103Ω � 102. In
such a case the brightness fluctuations on the surface of last scattering exceed
the observational limits by more than three orders of magnitude.
There is a possible escape from the limits on microwave background fluctua-

tions provided by the possible existence of a period of reheating after zrec, per-
haps caused by the energy liberated during pregalactic stellar evolution, which
smooths out some of the fluctuations in the microwave background. There
are problems with this escape route, however, as we shall see later in Chap-
ter 19.
The isothermal scenario does not suffer from the same difficulties with the

microwave background, chiefly because δr � 0 for the isothermal fluctuations,
and in any case the mass scale of the crucial first generation of clouds is so small.
The major difficulty in this case is that isothermal perturbations are ‘unnatu-
ral’: only very special processes can create primordial fluctuations in the mat-
ter component while leaving the radiation component undisturbed. One possi-
bility we should mention is that inflation, which generically produces fluctua-
tions of adiabatic type, can produce isocurvature fluctuations if the scalar field
responsible for generating the fluctuations is not the same as the field – the
inflaton – that drives the inflation. Isocurvature perturbations are, as we have
mentioned, similar to isothermal perturbations but not identical. Indeed a varia-
tion of the old isothermal model has been advocated in recent years by Peebles
(1987). His Primordial Isocurvature Baryon Model (PIB model) circumvents many
of the problems of the old isothermal baryon model, but has difficulties of its
own.
Difficulties with the adiabatic and isothermal pictures, chiefly the large-ampli-

tude fluctuations they predicted in the cosmicmicrowave background, opened the
way for the theories of the 1980s. These theories were built around the hypothesis
that the Universe is dominated by non-baryonic dark matter, in the form of weakly
interacting (collisionless) particles, perhaps neutrinos with mass mν � 10 eV or
some other ‘exotic’ particles (gravitinos, photinos, axions, etc.) predicted by some
theories of high-energy particle physics. There are various possible models; the
simplest is one of three components: baryonic material, non-baryonic material
made of a single type of particle, and radiation (also in this case, the addition of a
component of massless neutrinos does not have much effect upon the evolution
of perturbations). In this three-component system there are two fundamental per-
turbation modes again, similar to the two-component system mentioned above.
These two modes are curvature perturbations (adiabatic modes) and isocurvature
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perturbations. In the firstmode, all three components are perturbed (δm � δr � δi,
where i denotes the ‘exotic’ component); there is, therefore, a net perturbation in
the energy-density and hence a perturbation in the curvature of space–time. In
the second type of perturbation, however, the net energy-density is constant, so
there is no perturbation to the spatial curvature.
The fashionable models of the 1980s can also be divided into two categories

along the lines of the top-down/bottom-up labels we mentioned above. Here
the discriminating factor is not the type of initial perturbation, which is usually
assumed to be adiabatic in each case, but the form of the dark matter, as we shall
discuss in Chapter 13.
In the hot-dark-matter (HDM) scenario, which is similar in broad outline to the

old adiabatic baryon picture, the Universe is dominated by collisionless particles
with a very large velocity dispersion (hence the name ‘hot’), by virtue of it decou-
pling from the other components when it is still relativistic. A typical example is
a neutrino with massmν � 10 eV.
The cold-dark-matter (CDM) scenario has certain similarities to the old isother-

mal picture. This is characterised by the assumption that the Universe is dom-
inated again by collisionless particles, but this time with a very small velocity
dispersion (hence the term ‘cold’). This can occur if the particles decouple when
they are no longer relativistic (typical examples are supersymmetric particles such
as gravitinos and photinos) or have never been in thermal equilibrium with the
other components (e.g. the axion).
The rapid explosion in the quantity and quality of galaxy-clustering data (Chap-

ters 16 and 18) and the discovery by the COBE team in 1992 of fluctuations in
the temperature of the cosmic microwave background on the sky (Chapter 17)
have placed strong constraints on these theories. Nevertheless, the general pic-
ture that Jeans instability produces galaxies and large-scale structure from small
initial fluctuations seems to hold together extremely well. It remains to be seen
whether the remaining questions can be resolved, or are symptomatic of a funda-
mental flaw in the model.

15.3 Gravitational Instability in Brief

In order to focus our attention on the various possible models, let us now reca-
pitulate the essentials of the gravitational instability model.
In order to understand how structures form we need to consider the difficult

problem of dealing with the evolution of inhomogeneities in the expanding Uni-
verse. We are helped in this task by the fact that we expect such inhomogeneities
to be of very small amplitude early on so we can adopt a kind of perturbative
approach, at least for the early stages of the problem. If the length scale of the
perturbations is smaller than the effective cosmological horizon dH = c/H0, a
Newtonian treatment of the subject is expected to be valid. If the mean free path
of a particle is small, matter can be treated as an ideal fluid and the Newtonian
equations governing the motion of gravitating particles in an expanding universe
that we used in Chapters 10–12 can be used.
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From these equations the essential point is that, if one ignores pressure forces,
one obtains a simple equation for the evolution of δ:

δ̈+ 2Hδ̇− 3
2ΩH

2δ = 0. (15.3.1)

For a spatially flat universe dominated by pressurelessmatter, ρ0(t) = 1
6πGt

2 and
Equation (15.3.1) admits two linearly independent power law solutions δ(x, t) =
D±(t)δ(x), where D+(t) ∝ a(t) ∝ t2/3 is the growing mode and D−(t) ∝ t−1 is
the decaying mode.

15.4 Primordial Density Fluctuations

The above considerations apply to the evolution of a single Fourier mode of the
density field δ(x, t) = D+(t)δ(x). What is more likely to be relevant, however,
is the case of a superposition of waves, resulting from some kind of stochastic
process in which the density field consists of a superposition of such modes with
different amplitudes. A statistical description of the initial perturbations is there-
fore required, and any comparison between theory and observations will also have
to be statistical.
The spatial Fourier transform of δ(x) is

δ̃(k) = 1
(2π)3

∫
d3x e−ik·xδ(x). (15.4.1)

It is useful to specify the properties of δ in terms of δ̃. We can define the power
spectrum of the field to be (essentially) the variance of the amplitudes at a given
value of k:

〈δ̃(k1)δ̃(k2)〉 = P(k1)δD(k1 + k2), (15.4.2)

where δD is the Dirac delta function; this rather cumbersome definition takes
account of the translation symmetry and reality requirements for P(k); isotropy
is expressed by P(k) = P(k). The analogous quantity in real space is called the
two-point correlation function, or, more correctly, the autocovariance function,
of δ(x):

〈δ(x1)δ(x2)〉 = ξ(|x1 − x2|) = ξ(r) = ξ(r), (15.4.3)

which is itself related to the power spectrum via a Fourier transform. The shape
of the initial fluctuation spectrum is assumed to be imprinted on the universe at
some arbitrarily early time. As we have explained, many versions of the inflation-
ary scenario for the very early universe (Guth 1981; Guth and Pi 1982) produce a
power-law form

P(k) = Akn, (15.4.4)

with a preference in some cases for the Harrison–Zel’dovich form with n = 1
(Harrison 1970; Zel’dovich 1972). Even if inflation is not the origin of density fluc-
tuations, the form (15.4.4) is a useful phenomenological model for the fluctuation
spectrum.
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These considerations specify the shape of the fluctuation spectrum, but not its
amplitude. The discovery of temperature fluctuations in the CMB by COBE has
plugged that gap. We discuss the COBE normalisation in Chapter 17 but it is also
worth mentioning that the abundance of galaxy clusters also provides a viable
method for fixing the primordial amplitude; see, for example, Viana and Liddle
(1996).
The power spectrum is particularly important because it provides a complete

statistical characterisation of a particular kind of stochastic process: a Gaussian
random field. This class of field is the generic prediction of inflationary models, in
which the density perturbations are generated by Gaussian quantum fluctuations
in a scalar field during the inflationary epoch (Guth and Pi 1982; Brandenberger
1985).

15.5 The Transfer Function

We have hitherto assumed that the effects of pressure and other astrophysical
processes on the gravitational evolution of perturbations are negligible. In fact,
depending on the form of any dark matter, and the parameters of the background
cosmology, the growth of perturbations on particular length scales can be sup-
pressed relative to the growth laws discussed above.
We need first to specify the fluctuation mode. In cosmology, the two relevant

alternatives are adiabatic and isocurvature. The former involve coupled fluctu-
ations in the matter and radiation component in such a way that the entropy
does not vary spatially; the latter have zero net fluctuation in the energy density
and involve entropy fluctuations. Adiabatic fluctuations are the generic prediction
from inflation and form the basis of most currently fashionable models.
In the classical Jeans instability, pressure inhibits the growth of structure on

scales smaller than the distance traversed by an acoustic wave during the free-fall
collapse time of a perturbation. If there are collisionless particles of hot dark mat-
ter, they can travel rapidly through the background and this free streaming can
damp away perturbations completely. Radiation and relativistic particles may also
cause kinematic suppression of growth. The imperfect coupling of photons and
baryons can also cause dissipation of perturbations in the baryonic component.
The net effect of these processes, for the case of statistically homogeneous initial
Gaussian fluctuations, is to change the shape of the original power spectrum in
a manner described by a simple function of wave-number – the transfer function
T(k) – which relates the processed power spectrum P(k) to its primordial form
P0(k) via P(k) = P0(k) × T 2(k). The results of full numerical calculations of all
the physical processes we have discussed can be encoded in the transfer function
of a particular model (Bardeen et al . 1986; Holtzmann 1989). For example, fast-
moving or ‘hot’ dark-matter (HDM) particles erase structure on small scales by the
free-streaming effects mentioned above so that T(k) → 0 exponentially for large
k; slow-moving or ‘cold’ dark matter (CDM) does not suffer such strong dissipa-
tion, but there is a kinematic suppression of growth on small scales (to be more



The Transfer Function 329

baryons

iso CDM
HDM MDM CDM

iso baryons

0.01 0.1 1 10

0.01

0.1

1

10

0.001

k / h2 (Mpc−1)Ω

|Tk |

Figure 15.1 Examples of adiabatic transfer functions for baryons, hot darkmatter (HDM),
cold dark matter (CDM) and mixed dark matter (MDM; also known as CHDM). Isocurvature
modes are also shown. Picture courtesy of John Peacock.

precise, on scales less than the horizon size at matter–radiation equality); signif-
icant small-scale power nevertheless survives in the latter case. These two alter-
natives thus furnish two very different scenarios for the late stages of structure
formation: the ‘top-down’ picture exemplified by HDM first produces superclus-
ters, which subsequently fragment to form galaxies; CDM is a ‘bottom-up’ model
because small-scale structures form first and then merge to form larger ones. The
general picture that emerges is that, while the amplitude of each Fourier mode
remains small, i.e. δ(k)  1, linear theory applies. In this regime, each Fourier
mode evolves independently and the power spectrum therefore just scales as

P(k, t) = P(k, t1) D
2+(k, t)

D2+(k, t1)
= P0(k)T 2(k) D

2+(k, t)
D2+(k, t1)

.

For scales larger than the Jeans length, this means that D+(k, t) = D+(t) only,
so that the shape of the power spectrum is preserved during linear evolution on
large scales. The quantity D+(t) is then just the growth factor δ+ we discussed in
Chapter 10.
Examples of transfer functions are shown in Figure 15.1. Note that the adiabatic

transfer functions for CDM and HDM are all smooth, while the baryonic version
has strong oscillations. The latter are produced by the acoustic oscillations we
remarked upon in Chapter 11.Waves with differentmodes have different temporal
phases which result in the waves arriving at recombination at different stages
of their cycle. At recombination the restoring force for the oscillations supplied
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by pressure disappears and the waves become stranded with an amplitude that
depends on wavelength. Since both HDM and CDM are collisionless, there is never
any restoring force. Acoustic oscillations therefore do not occur.
The HDM transfer function shows a rapid cut-off at high k caused by free

streaming, while CDM displays a graceful ‘knee’ produced by the Meszaros-
suppression of fluctuations inside the horizon prior to matter–radiation equiva-
lence. A characteristic scale for this knee is supplied by Ω0h2: the lower the value
of Ω0 the later the time of matter–radiation equivalence, the bigger the horizon
at that point and the larger the scale of the knee.

15.6 Beyond Linear Theory

The linearised equations of motion provide an excellent description of gravi-
tational instability at very early times when density fluctuations are still small
(δ  1). The linear regime of gravitational instability breaks down when δ
becomes comparable with unity, marking the commencement of the quasilinear
(or weakly nonlinear) regime. During this regime the density contrast may remain
small (δ < 1), but the phases of the Fourier components δk become substan-
tially different from their initial values resulting in the gradual development of a
non-Gaussian distribution function if the primordial density field was Gaussian.
In this regime the shape of the power spectrum changes by virtue of a compli-
cated cross-talk between different wave-modes. The usual approach is to use N-
body experiments for strongly nonlinear analyses (Davis et al . 1985; Jenkins et al .
1998).
Further into the nonlinear regime, bound structures form. The baryonic content

of these objects may then become important dynamically: hydrodynamical effects
(e.g. shocks), star formation and heating and cooling of gas all come into play. The
spatial distribution of galaxies may therefore be very different from the distribu-
tion of the (dark) matter, even on large scales. Attempts are only just being made
to model some of these processes with cosmological hydrodynamics codes, but it
is some measure of the difficulty of understanding the formation of galaxies and
clusters that most studies have only just begun to attempt to include modelling
the detailed physics of galaxy formation. In the front rank of theoretical efforts in
this area are the so-called semi-analytical models, which encode simple rules for
the formation of stars within a framework of merger trees that allow the hierar-
chical nature of gravitational instability to be explicitly taken into account (Baugh
et al . 1998).
The usual approach is instead simply to assume that the point-like distribution

of galaxies, galaxy clusters or whatever,

n(r) =
∑
i
δD(r − ri), (15.6.1)

bears a simple functional relationship to the underlying δ(r). An assumption
often invoked is that relative fluctuations in the object number-counts and matter
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density fluctuations are proportional to each other, at least within sufficiently
large volumes, according to the linear biasing prescription:

δn(r)
n̄

= bδρ(r)
ρ̄

, (15.6.2)

where b is what is usually called the biasing parameter. For more detailed discus-
sion see Section 14.8.

15.7 Recipes for Structure Formation

It should now be clear that models of structure formation involve many ingredi-
ents which may interact in a complicated way. In the following list, notice that
most of these ingredients involve at least one assumption that may well turn out
not to be true.

1. A background cosmology. This basically means a choice of Ω0, H0 and Λ,
assuming we are prepared to stick with the Robertson–Walker metric and
the Einstein equations.

2. An initial fluctuation spectrum. This is usually taken to be a power law, but
may not be. The most common choice is n = 1.

3. A choice of fluctuation mode: usually adiabatic.

4. A statistical distribution of the initial fluctuations. This is often assumed to
be Gaussian.

5. A normalisation of the power spectrum, usually taken to be the COBE
microwave backgroundmeasurements but there are other possibilities, such
as requiring the abundance of clusters produced by the model to match
observations.

6. The transfer function, which requires knowledge of the relevant proportions
of ‘hot’, ‘cold’ and baryonic material as well as the number of relativistic
particle species.

7. A ‘machine’ for handling nonlinear evolution, so that the distribution of
galaxies and other structures can be predicted. This could be an N-body
or hydrodynamics code, an approximated dynamical calculation or simply,
with fingers crossed, linear theory.

8. A prescription for relating fluctuations in mass to fluctuations in light, fre-
quently the linear bias model.

Historically speaking, the first model incorporating non-baryonic darkmatter to
be seriously considered was the HDM scenario, in which the universe is dominated
by a massive neutrino with mass around 10–30 eV. This scenario has fallen into
disrepute because the copious free streaming it produces smooths the matter
fluctuations on small scales and means that galaxies form very late. The favoured
alternative for most of the 1980s was the CDM model in which the dark-matter
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particles undergo negligible free streaming owing to their higher mass or non-
thermal behaviour. A ‘standard’ CDM model (SCDM) then emerged in which the
cosmological parameters were fixed at Ω0 = 1 and h = 0.5, the spectrum was of
the Harrison–Zel’dovich form with n = 1 and a significant bias, b = 1.5–2.5, was
required to fit the observations (Davis et al . 1985).
The SCDM model was ruled out by a combination of the COBE-inferred ampli-

tude of primordial density fluctuations, galaxy-clustering power-spectrum esti-
mates on large scales, rich cluster abundances and small-scale velocity disper-
sions (e.g. Peacock and Dodds 1996). It seems that the standard version of this
theory simply has a transfer function with the wrong shape to accommodate all
the available data with an n = 1 initial spectrum. Nevertheless, because CDM
is such a successful first approximation and seems to have gone a long way to
providing an answer to the puzzle of structure formation, the response of the
community has not been to abandon it entirely, but to seek ways of relaxing the
constituent assumptions in order to get a better agreement with observations.
Various possibilities have been suggested.
If the total density is reduced to Ω0 � 0.3, which is favoured by many argu-

ments, then the size of the horizon at matter–radiation equivalence increases
compared with SCDM and much more large-scale clustering is generated. This is
called the open CDM model, or OCDM for short. The simplest way to describe
this effect is to look at the shape of the CDM transfer function shown in Fig-
ure 15.1. This shows that position of the ‘knee’ scales with Ωh if k is mea-
sured in Mpc/h. This means that the knee pushes to lower physical wavenum-
bers, i.e. to larger scales, for low-density models. This is usually taken to define
a shape parameter Γ = Ω0h so that the SCDM model has Γ = 0.5 and the OCDM
version might have a shape parameter more like 0.2. The scaling with Ω is not
quite exact, however: it is broken by the presence of baryons (Peacock and Dodds
1994).
Those unwilling to dispense with the inflationary predilection for flat spatial

sections have invoked Ω0 = 0.2 and a positive cosmological constant (Efstathiou
et al . 1990) to ensure that k = 0; this can be called ΛCDM and is apparently also
favoured by the observations of distant supernovae we havementioned previously
(Riess et al . 1998; Perlmutter et al . 1999). Much the same effect on the power
spectrum may be obtained in Ω = 1 CDM models if matter–radiation equivalence
is delayed, such as by the addition of an additional relativistic particle species.
The resulting models are usually called τCDM (White et al . 1995).
Another alternative to SCDM involves a mixture of hot and cold dark mat-

ter (CHDM), having perhaps Ωhot = 0.3 for the fractional density contributed
by the hot particles. For a fixed large-scale normalisation, adding a hot com-
ponent has the effect of suppressing the power-spectrum amplitude at small
wavelengths (Davis et al . 1992; Klypin et al . 1993). A variation on this theme
would be to invoke a ‘volatile’ rather than ‘hot’ component of matter produced by
the decay of a heavier particle (Pierpaoli et al . 1996). The non-thermal character
of the decay products results in subtle differences in the shape of the transfer
function in the CVDM model compared with the CHDM version. Another possi-
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CDM
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τ

Figure 15.2 Some of the candidate models described in the text, as simulated by the
Virgo consortium. Notice that SCDM shows very different structure at z = 0 than the
three alternatives shown. The models also differ significantly at different epochs. These
simulations show the distribution of dark matter only. Picture courtesy of the Virgo Con-
sortium.

bility is to invoke non-flat initial fluctuation spectra, while keeping everything
else in SCDM fixed. The resulting ‘tilted’ models (TCDM) usually have n < 1
power-law spectra for extra large-scale power and, perhaps, a significant frac-
tion of tensor perturbations (Lidsey and Coles 1992). Models have also been con-
structed in which non-power-law behaviour is invoked to produce the required
extra power: these are the broken scale-invariance (BSI) models (Gottlober et al .
1994).
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But diverse though this collection of alternatives may seem, it does not include
any models in which the assumption of Gaussian statistics is relaxed. This is at
least as important as the other ingredients which have been varied in some of
the above models. The reason for this is that fully specified non-Gaussian mod-
els are hard to construct, even if they are based on purely phenomenological
considerations (Weinberg and Cole 1992; Coles et al . 1993b). Models based on
topological defects rather than inflation generally produce non-Gaussian features
but are computationally challenging (Avelino et al . 1998). A notable exception is
the ingenious isocurvature model of Peebles (1999).

15.8 Comments

The models we have described in this chapter are not the only possible construc-
tions of the basic gravitational instability scenario, but the list includes most of
the current front runners. Our purpose was however not to try guessing the pre-
cise combination of parameters describing our universe but instead to set up a
set of plausible models so that we can see in Part 4 how the differences between
them might be probed.
It is interesting how the appealing simplicity of the standard cold dark matter

has been superseded by a collection of apparently more complex third-generation
models, all of which have extra free parameters to cover the basic deficiencies of
SCDM. There is something very similar to Ptolemy’s epicycles in this development
and it would be somewhat depressing were it not for the fact that the field has
entered a period not only of dramatic observational breakthroughs but of intense
interplay between theory and observation.

Bibliographic Notes on Chapter 15

An excellent account of the field of structure-formation theory is given in Peacock
(1999) and, with an emphasis on inflation models, by Liddle and Lyth (2000).

Problems

1. Account for the behaviour of the CDM isocurvature transfer function shown in Fig-
ure 15.1.

2. Calculate the radius of a sphere within which the average mass corresponds to that
of a rich clusterMC � 1014M�. Use this radius within the Press–Schechter formalism
described in the previous chapter to derive an expression for the number-density of
clusters of mass exceeding MC and investigate how this number varies with power-
spectral index and Ω0.

3. Rich clusters of galaxies have velocity dispersions of order 1000 km s−1 Mpc−1 or
larger. Show that these objects correspond to metric perturbations of order 10−5.



PART4

Observational Tests





16

Statistics of
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Clustering

16.1 Introduction

We now turn to the question of how to test theories of structure formation using
observations of galaxy clustering. As we have seen, a theory for the origin of
galaxies and clusters contains several ingredients which interact in a complicated
way to produce the final structure. First, there is the background cosmological
model which, in ‘standard’ theories, will be a Friedmann model specified by two
parameters H0 and Ω. Then we need to know the breakdown of the global mass
density into baryons and non-baryonic matter. If the latter exists, we need to know
whether it is hot or cold, or a mixture of the two. These two sets of information
allow us to supply the transfer function (Section 14.7). If we then assume a spec-
trum for the primordial fluctuations, either in an ad hoc manner or by appealing
to an inflationary model, we can use the transfer function to predict the shape of
the fluctuation spectrum in the linear regime. But, importantly, we have no way
to calculate a priori the normalisation, or amplitude, of the spectrum.
There are two ways one can attempt to normalise the power spectrum. One is to

compare the properties of mass fluctuations predicted within the framework of
the model using either linear theory (on sufficiently large scales) or N-body sim-
ulations. There are several problems with these approaches. One problem with
linear theory is that one cannot be sure how accurate it will be for fluctuations
of finite (i.e. measurable) amplitude. One therefore needs to be very careful to
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choose the appropriate statistical measure of fluctuations to compare the theory
with the observations. Moreover, the linear approximation is only expected to be
accurate on large scales where, because of the assumption of statistical homo-
geneity implicit in the Cosmological Principle, the fluctuation level will be small
and therefore difficult to measure above sampling noise (statistical uncertainty
due to finite survey size). Secondly, one needs to be sure that the sample of galax-
ies one uses to ‘measure’ clustering in our observed Universe is large enough to
be, in some sense, representative of the Universe as a whole. If one extracts a sta-
tistical measure of clustering from a finite sample, then the value of the statistic
would be different if one took a sample of the same size at a different place in the
Universe. This effect is generally known as ‘cosmic variance’, although this is not
a particularly good term for the phenomenon it purports to describe. Important
though these problems are, they are overshadowed by the obstacle presented by
the existence of a bias, as described in Section 14.8. This means that, however
accurately one can predict mass fluctuations analytically and however robustly
one can measure galaxy fluctuations observationally, one cannot compare the
two without assuming some ad hoc relationship between galaxies and mass like
the linear bias model.
As we shall see, bias complicates all galaxy-clustering studies. If the bias is of the

linear form described by Equation (14.8.10), then there is a simple constant mul-
tiplier between the ‘mass’ statistic and the ‘galaxies’ statistic so that, for example,
the shape of the galaxy–galaxy correlation function and the shape of the matter
autocovariance function are the same, but the amplitudes are different. In this
case, knowing the multiplier b essentially eliminates the problem. On the other
hand, the linear bias model is only expected to be applicable on very large scales
(and perhaps not even then). Indeed, it is possible to imagine an extreme kind of
bias which has the effect that there is very little correlation between the positions
of galaxies and concentrations of mass. This is especially the case in scenarios
where the bulk of the matter of the Universe is in the form of non-baryonic and
therefore non-luminous material. Fortunately, however, there are ways to circum-
vent the bias problem to achieve a normalisation of the power spectrum or, at
least, constrain it.
One way is to look not just at the positions of galaxies, but also at their peculiar

motions. These motions are generated by gravity which, in turn, is generated by
the whole mass distribution, not just by the luminous part. As we discussed in
Section 4.6, the existence of peculiar motions means that the Hubble law is not
exactly correct and consequently that a galaxy’s redshift is not directly propor-
tional to its distance from the observer. Galaxy redshift surveys generally supply
only the redshifts, which are tacitly assumed to translate directly into distances
via the Hubble law. Statistical measurements based on redshift surveys are there-
fore ‘distorted’ by deviations from the Hubble flow. The direct use of measured
peculiar velocities and the indirect use of redshift-space distortions are both dis-
cussed in detail in Chapter 18; in the present chapter we shall generally assume
that we can measure the statistical quantities in question in real space without
worrying about redshift space.
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The other way to normalise the spectrum only recently became possible with
the COBE discovery of fluctuations in the CMB temperature in 1992. These are
generally thought to be due to the influence of primordial fluctuations at t � trec,
long before galaxy formation commenced. Knowing the amplitude of these fluctu-
ations allows one, in principle, to compute the amplitude of the power spectrum
at the present time without worrying about bias at all. We discuss this, and other
issues connected to the CMB, in Chapter 17.
In the present chapter we shall concentrate on the statistical study of the clus-

tering properties of galaxies and galaxy clusters and the relationship between
observed statistical properties and theory. We shall use some of the tools intro-
duced in Chapter 14 but will also introduce many new ones including, for exam-
ple, techniques based on ideas from topology, dynamical systems and condensed
matter physics. Different statistical descriptors measure different aspects of the
clustering pattern revealed by a survey. Some quantities, such as the two-point
correlation function (Section 16.2), the cell-count variance (Section 16.6) and the
galaxy power spectrum (Section 16.7) are directly related to, and can therefore
constrain, the fluctuation power spectrum. Other approaches, such as percola-
tion analysis (Section 16.9) and topology (Section 16.10), test the morphology of
the large-scale galaxy distribution and may therefore be sensitive to the existence
of sheets and filaments predicted in the nonlinear phase of perturbation evolution
or to features, such as bubbles, which may be connected with some form of non-
Gaussian perturbation (Section 14.10). These methods therefore constrain a dif-
ferent set of ‘ingredients’ of structure-formation models. Other methods, such as
higher-order correlations (Section 16.4), can shed light on whether self-similarity
is important in the origin of the observed structure. We shall also take the oppor-
tunity in this chapter to show specific examples of how recent analyses of the 2dF
Galaxy Redshift Survey and Sloan data using these statistical tools have yielded
important constraints on models of structure formation. We shall, however, try
to place an emphasis on methods rather than existing results, since we anticipate
that new data will add much to our understanding of galaxy clustering in the next
few years.

16.2 Correlation Functions

We begin our study of statistical cosmology by describing the correlation func-
tions which have, for many years, been the standard way of describing the clus-
tering of galaxies and galaxy clusters in cosmology. The use of these functions
was first suggested in the 1960s by Totsuji and Kihara (1969), but their most
influential advocate has been Peebles, who, along with several colleagues in the
1970s, carried out a program to extract estimates of these functions from the Lick
galaxy catalogue and other data sets; see Peebles (1980) and references therein
for details.
The correlation functions furnish a description of the clustering properties of a

set of points distributed in space. The space can be three dimensional, but useful
results are also obtainable for two-dimensional distributions of positions on the
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celestial sphere; see Section 16.3. We shall assume in this section that our ‘points’
are galaxies but this need not be the case. Indeed, this technique has been applied
not only to various different kinds of galaxies (optical, infrared, radio) but also to
quasars and clusters of galaxies; these latter objects are particularly important,
for reasons we shall describe in Section 16.5. We shall also see that the correlation
functions are closely related to the functions we described in Section 13.9 as the
covariance functions, the difference between covariance and correlation functions
being that the former describe properties of a continuous density field while the
latter describe properties of a clustered set of points.
We have met the simplest correlation function already, in Section 13.9, but we

give a more complete definition here. The joint probability δ2P2 of finding one
galaxy in a small volume δV1 and another in the volume δV2, separated by a
vector r12, if one chooses the two volumes randomlywithin a large (representative)
volume of the Universe, is given by

δ2P2 = n2V [1+ ξ(r12)]δV1δV2, (16.2.1)

where nV is the mean number-density of galaxies and the function ξ(r) is called
the two-point galaxy–galaxy spatial correlation function. Because of statistical
homogeneity and isotropy, ξ depends only on themodulus of the vector r12 (which
we have written r12 in the equation) and not on its direction. If the galaxies are
sprinkled completely randomly in space, then it is clear that ξ(r12) ≡ 0; thismeans
that ξ represents the excess probability, compared with a uniform random distri-
bution, of finding another galaxy at a distance r12 from a given galaxy. If ξ(r) > 0,
then galaxies are clustered, and if ξ(r) < 0, they tend to avoid each other. For rea-
sons we explained in Section 14.9, if the correlation function is positive at r12 � 0,
it must change sign at large r12 so that its volume integral over all r12 does not
diverge. Equation (16.2.1) implies, for example, that the mean number of galaxies
within a distance r of a given galaxy is

〈N〉r = 4
3πnVr

3 + 4πnV
∫ r
0
ξ(r ′12)r

′2
12 dr

′
12 : (16.2.2)

the second term on the right-hand side of this equation represents the excess
number compared with a uniform random distribution.
The two-point correlation function of a self-gravitating distribution of matter

evolves rapidly in the nonlinear regime. This means that the shape of ξ(r) in the
regime where ξ � 1 or greater will be very different from that of the primor-
dial correlation function, and the amplitude will be different from that expected
from linear theory. For this reason one cannot expect to use observations of ξ(r)
directly to normalise the spectrum. Notice, however, that the second term on the
right-hand side of Equation (16.2.2) is an integral over ξ which is weighted to large
r , and hence to regions of small ξ(r). This motivates the use of the quantity J3,
defined by

J3(R) ≡
∫ R
0
ξ(r)r 2 dr = 1

3R
3
∫
WTH(kR)P(k)d3k, (16.2.3)
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with R up to several tens of Mpc, to obtain the normalisation; WTH is the top-hat
window function introduced in Section 13.3. This kind of normalisation was used
frequently before the discovery of CMB temperature fluctuations.
Let us stress again that ξ(r)measures the correlations between galaxies, not the

correlations of the mass distribution. These might be equal if galaxies trace the
mass, but if galaxy formation is biased they will differ. In the linear bias model –
equation (14.8.10) – the galaxy–galaxy correlations will be a factor b2 higher than
the mass correlations.
If one only has a two-dimensional (projected) catalogue, then one can define the

two-point galaxy–galaxy angular correlation function, w(ϑ), by

δ2P2 = n2Ω[1+w(ϑ12)]δΩ1δΩ2, (16.2.4)

which, in analogy with (16.2.1), is just the probability of finding two galaxies in
small elements of solid angle δΩ1 and δΩ2, separated by an angle ϑ12 on the
celestial sphere; nΩ is the mean number of galaxies per unit solid angle on the
sky.
In an analogous manner one can define the correlation functions for N > 2

points; we mentioned this in Section 13.9. The definition proceeds from equa-
tion (13.8.15), which gives the probability of finding N galaxies in the N (disjoint)
volumes δVi in terms of the totalN-point correlation function ξ(N). This function,
however, contains contributions from correlations of lower order than N and a
more useful statistic is the reduced or connected correlation function, which is
simply that part of ξ(N) which does not depend on correlations of lower order;
we shall use ξ(N) for the connected part of ξ(N). One can illustrate the way to
extract the reduced correlation function simply using the three-point function as
an example. Using the cluster expansion in the form given by equation (13.8.13)
and, as instructed in Section 13.9, interpreting the single partitions 〈δi〉 as having
the value of unity for point distributions rather than the zero value one uses in
the case for continuous fields, we find

δ3P3 = n3V [1+ ξ(r12)+ ξ(r23)+ ξ(r31)+ ζ(r12, r23, r31)]δV1δV2δV3, (16.2.5)

where ζ ≡ ξ(3) is the reduced three-point function. The terms ξ(rij) represent
the excess number of triplets one gets compared with a random distribution
(described by the ‘1’) just by virtue of having more pairs than in a random distri-
bution; the term ζ is the number of triplets above that expected for a distribution
with a given two-point correlation function. From now on we shall drop the term
‘connected’ or ‘reduced’; whenever we use an N-point correlation function, it will
be assumed to be the reduced one. The three-point angular correlation function
z is defined in an analogous manner:

δ3P3 = n3Ω[1+w(ϑ12)+w(ϑ23)+w(ϑ31)+z(ϑ12, ϑ23, ϑ31)]δΩ1δΩ2δΩ3, (16.2.6)

which is the probability of finding galaxies in the three solid-angle elements δΩ1,
δΩ2 and δΩ3, separated by angles ϑ12, ϑ23 and ϑ31 on the celestial sphere. For
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N = 4 the spatial correlation function η ≡ ξ(4) is defined by

δ4P4 = n4V [1+ ξ(r12)+ ξ(r13)+ ξ(r14)+ ξ(r23)+ ξ(r24)+ ξ(r34)
+ ξ(r12)ξ(r34)+ ξ(r13)ξ(r24)+ ξ(r14)ξ(r23)
+ ζ(r12, r23, r31)+ ζ(r12, r24, r41)+ ζ(r13, r34, r41)
+ ζ(r23, r34, r42)+ η(r12, r13, r14, r23, r24, r34)]δV1δV2δV3δV4

(16.2.7)

in an obvious notation; one can also define the four-point angular function u in
an appropriate manner. The usual notation for the five-point spatial function is
τ ≡ ξ(5) and, for its angular version, t.

16.3 The Limber Equation

One of the most useful aspects of the correlation functions, particularly the two-
point correlation function, is that its spatial and angular versions have a rela-
tively simple relationship between them. This allows one to extract an estimate
of the spatial function from the angular version. In Section 4.5 we introduced the
luminosity function Φ(L). Let us convert this into a function of magnitude M , as
described in Section 1.8, via Ψ(M) = Φ(L)|dL/dM|. This allows us to write

δ2P = Ψ(M)δMδV, (16.3.1)

which is the probability of finding a galaxy with absolute magnitude between M
andM+δM in the volume δV . By analogy with Equation (16.2.1) we can also write
the joint probability of finding two galaxies, one in δV1 with magnitude between
M1 andM1+δM1 and the other in δV2 with magnitude betweenM2 andM2+δM2,
separated by a distance r12, as

δ4P = [Ψ(M1)Ψ(M2)+G(M1,M2, r12)]δM1δM2δV1δV2, (16.3.2)

where the function G takes account of the correlations between the galaxies. We
now suppose that the absolute magnitude of a galaxy is statistically independent
of its position with respect to other galaxies, that is to say that Ψ(M) is indepen-
dent of the strength of clustering. This hypothesis, called the Limber hypothesis,
seems to be verified by observations but is actually quite a strong assumption:
it means, for example, that there is no variation of the luminosity properties of
galaxies with the density of their environment. We then write

G(M1,M2, r12) = Ψ(M1)Ψ(M2)ξ(r12). (16.3.3)

Projected catalogues generally collect the positions of galaxies brighter than a cer-
tain apparent magnitude limitm0 within some well-defined region on the celestial
sphere. To take account of systematic observational errors concerning the objects
with apparent magnitudem �m0, one introduces a selection function f(m−m0)
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which is the probability that an observer includes a galaxy with apparent magni-
tude m in the catalogue. The function f should be equal to unity for m  m0

(galaxies much brighter thanm0), and practically zero form�m0. A good cata-
logue will also have a sharp cut-off atm �m0, though this is not always realised
in practice. The luminosity function of galaxies has a characteristic magnitude
at M∗ � −19.5 + 5 logh and tends rapidly to zero for M < M∗. Let us assume
that the typical distance from the observer of galaxies in the catalogue is D∗, the
distance at which a galaxy with absolute magnitude M∗ is seen with an apparent
magnitudem0; from Equation (1.8.3) we have

D∗ = 100.2(m0−M∗)−5 Mpc. (16.3.4)

The number of galaxies in a certain catalogue per unit solid angle, from Equa-
tions (16.3.1) and (16.3.4), is given by

nΩ = D∗3
∫∞

0
x2 dx

∫ +∞

−∞
Ψ(M)f(M −M∗ + 5 logx)dM = D∗3

∫∞

0
ψ(x)x2 dx,

(16.3.5)

where x = r/D∗ and

ψ(x) =
∫ +∞

−∞
Ψ(M)f(M −M∗ + 5 logx)dM. (16.3.6)

The function ψ(x) represents the number of galaxies per unit volume, at a dis-
tance given by r = xD∗, belonging to the catalogue. This function is given to a
good approximation by

ψ(x) = nVx−5β (β = 0.25; x < 1), (16.3.7a)

ψ(x) = nVx−5α (α = 0.75; 1 < x < x0), (16.3.7b)

ψ(x) = 0 (x > x0 � 102/5α = 108/15). (16.3.7 c)

From Equations (16.3.2) and (16.3.3) one can recover Equation (16.2.4):

δ2P2 = n2Ω[1+w(ϑ12)]δΩ1δΩ2

= D∗6
∫∞

0
ψ(x1)x21 dx1

∫∞

0
ψ(x2)x22[1+ ξ(r12)]dx2δΩ1δΩ2, (16.3.8)

where

r 212 = D∗2(x21 + x22 − 2x1x2 cosϑ12). (16.3.9)

It is helpful to move to new variables:

x = 1
2(x1 + x2), y = x1 − x2

xϑ12
. (16.3.10)

Because the catalogue is assumed to be a ‘fair’ sample of the Universe, the typical
length scale of correlations must be much less than D∗. For this reason the main
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contribution to the integral over ξ(r12) in (16.3.8) comes from points with x1 �
x2 � 1, separated by a small angle ϑ12. For this reason (16.3.9) becomes

r 212 � D∗2x2ϑ212(1+y2) (16.3.11)

and the Equations (16.3.8) and (16.3.11) furnish the relation

w(ϑ12) � ϑ12
∫∞
0 ψ2(x)x5 dx

∫+∞
−∞ ξ[D∗xϑ12(1+y2)1/2]dy

[
∫∞
0 ψ(x)x2 dx]2

, (16.3.12)

called the Limber equation (obtained by Limber (1953, 1954) to analyse the correla-
tions of stars in our Galaxy). This relationship has the interesting scaling property
that

w′
(
ϑ′12 =

D∗

D∗′ ϑ12
)
= D∗

D∗′w(ϑ12), (16.3.13)

where w and w′ are the correlation functions corresponding to two catalogues
with characteristic distances D∗ and D∗′

, respectively.
One can extend the Limber equation to higher-order correlations N > 2, still

assuming the Limber hypothesis. It is thus possible to relate the angular and
spatial N-point functions for N > 2. We shall spare the reader the details, but just
mention some of the results in the next section.

16.4 Correlation Functions: Results

16.4.1 Two-point correlations

The analysis of two-dimensional catalogues of the projected positions of galaxies
on the sky (chiefly the Lick map and, more recently, the APM and COSMOS sur-
veys) has shown that, over a suitable interval of angles ϑ, the angular two-point
correlation function w(ϑ) is well approximated by a power law

w(ϑ) � A∗ϑ−δ (ϑmin � ϑ � ϑmax; δ � 0.8), (16.4.1)

where the amplitude A∗ depends on the characteristic distance D∗ of the galax-
ies in the catalogue, and the angular interval over which the relationship (16.4.1)
holds corresponds to a spatial separation 0.1h−1 Mpc � r � 10h−1 Mpc at this
distance. One can use the scaling relation (16.3.13) to compare the correlation
functions of catalogues with different values of D∗ and so check the assump-
tions upon which the analysis is based. Beyond the power-law regime the angular
correlation function breaks and rapidly falls to zero.
If one makes the assumption that, over a certain interval of scale, the two-point

spatial correlation function is given by

ξ(r) = Br−γ, (16.4.2)
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Figure 16.1 The dots with error bars show determinations ofw(ϑ) from the APM survey,
while the solid lines show a family of CDM models labelled by the shape parameter Γ .
Figure courtesy of Steve Maddox.

then one can recover from Equation (16.3.12) that

w(ϑ) = Aϑ1−γ = Aϑ−δ, (16.4.3)

where the constants A and B are related by

A
B
= Γ (1/2)Γ [(γ − 1)/2]

Γ (γ/2)

∫∞
0 x5−γψ2(x)dx
[
∫∞
0 x2ψ(x)dx]2

D∗−γ (16.4.4)

(Γ is the Euler gamma function). The assumption (16.4.2) therefore appears con-
sistent with the angular correlation function (16.4.1) if

ξ(r) �
(
r
r0g

)−γ
, (16.4.5)

with r0g � 5h−1 Mpc and γ � 1.8 in the range 0.1h−1 Mpc � r � 10h−1 Mpc
(e.g. Shanks et al . 1989); on larger scales the correlation function tends rapidly
towards zero and is difficult to measure above statistical noise. The form of ξ(r)
given in (16.4.5) is confirmed by direct, i.e. three-dimensional, determinations
from galaxy surveys, as shown in Figure 16.2. The quantity r0g, where ξ = 1,
is often called the correlation length of the galaxy distribution; it marks, roughly
speaking, the transition between linear and nonlinear regimes.
The usual method for estimating ξ(r), or w(ϑ), employs a random Poisson

point process generated with the same sample boundary and selection function
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as the real data; one can then estimate ξ straightforwardly according to

1+ ξ̂(r) � nDD(r)
nRR(r)

(16.4.6)

or, more robustly, using either

1+ ξ̂(r) � nDD(r)
nDR(r)

(16.4.7a)

or

1+ ξ̂(r) � nDD(r)nRR(r)
n2DR(r)

, (16.4.7b)

wherenDD(r),nRR(r) andnDR(r) are the number of pairs with separation r in the
actual data catalogue, in the random catalogue and with one member in the data
and one in the random catalogue, respectively. In Equations (16.4.6) and (16.4.7)
we have assumed, for simplicity, that the real and random catalogues have the
same number of points (which they need not). The second of these estimators is
more robust to boundary effects (e.g. if a cluster lies near the edge of the survey
region), but they both give the same result for large samples.

16.5 The Hierarchical Model

The problemwith the higher-order correlation functions ξ(N) is that they are func-
tions of all the distances separating the N points and are consequently much
more difficult to interpret than ξ = ξ(2), which is a function of only one variable.
It therefore helps to have a model for the higher-order correlations which one
can use to interpret the results. The fact that the two-point correlation function
has a power-law behaviour suggests that one might look for a hierarchical model,
i.e. for a self-similar behaviour of the ξ(N) in which the Nth function is related
to the (N − 1)th function and thence all the way down to the two-point function,
according to some simple scaling rule. Notice that this assumption is conceptu-
ally distinct from the simplified treatment of hierarchical clustering we presented
in Section 14.4, i.e. the hierarchical model for correlations does not automati-
cally follow from that discussion. In fact, the hierarchical model here rests on the
assumption of scale invariance, i.e. that the higher-order correlations possess no
characteristic scale. The appropriate model for the three-point function is

ζ(r12, r23, r31) = ξ(3)(r12, r23, r31) = Q(ξ12ξ23 + ξ23ξ31 + ξ31ξ12), (16.5.1)

whereQ is a constant. This form does indeed appear to fit observations fairly well,
with a value Q � 1 over the range 50h−1 kpc < r < 5h−1 Mpc. The appropriate
generalisation of Equation (16.5.1) to N > 3 is more complicated, and involves a
bit of combinatorial analysis:

ξ(N) =
∑

topologies

QN,t
∑

relabellings

∏
edges

ξij. (16.5.2)
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Figure 16.2 Estimates of ξ(r) from different redshift surveys, including the Las Cam-
panas Redshift Survey shown in Figure 4.6. The variable s is shown instead of r to denote
determination in redshift space, rather than real space; see Section 18.5. Figure courtesy
of Tom Shanks.
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The notation here means a product over the (N − 1) edges linking N objects,
summed over all relabellings of the objects (l) and summed again over all distinct
N-tree graphs with a given topology t weighted by a coefficient QN,t . The four-
point term must therefore include two coefficients, one for ‘snake’ connections
and the other for ‘star’ graphs, as illustrated in Figure 16.3. For N = 2 and N = 3,
the different graphs connecting the points are topologically equivalent, but for
N = 4 there are two distinct topologies. The topological difference can be seen by
considering the result of cutting one edge in the graph. The first ‘snake’ topology
is such that connections can be cut to leave either two pairs, or one pair and a
triplet. The second cannot be cut in such a way as to leave two pairs; this is a
‘star’ topology. There are twelve possible relabellings of the snake and four of the
star. For the N = 5 function, there are three distinct topologies, illustrated in the
figure with 5, 60 and 60 relabellings, respectively. We leave it as an exercise for
the reader to show that N = 6 has six different topologies, and a total of 1296
different relabellings.
The Lick and Zwicky catalogues have also supplied a rather uncertain estimate

of the four-point correlation function, which is given by the approximate relation

η = ξ(4) � Ra[ξ(r12)ξ(r23)ξ(r34)+ 11 others]
+ Rb[ξ(r12)ξ(r13)ξ(r14)+ 3 others], (16.5.3)

where the function η depends on the six independent interparticle distances as
in Equation (16.2.7); the first twelve terms correspond to ‘snake’ topologies and
the second four to ‘stars’; the quantities Ra and Rb correspond to QN,t of Equa-
tion (16.5.2) for each of the two topologies; from observations, Ra � 2.5 and
Rb � 4.3. This again seems to confirm the hierarchical model. Indeed, as far as
one can tell within the statistical errors, all the correlation functions up to N � 8
seem to follow a roughly hierarchical pattern. The success of this model is intrigu-
ing, particularly as the analysis of galaxy counts in cells seems to confirm that it
extends to larger scales than can be probed directly by the correlation functions.
A sound theoretical understanding of this success now seems to be emerging: the
strongly nonlinear behaviour (16.5.2) is consistent with our understanding of the
statistical mechanics of self-gravitating systems through a hierarchy of equations
studied first by Born, Bogoliubov, Green, Kirkwood and Yvon, which is known
as the BBGKY hierarchy. The behaviour in the weakly nonlinear regime can be
understood by perturbation theory.

16.5.1 Comments

The extraction of estimates of ξ(N) from galaxy samples has involved a huge
investment of computer power over the last two decades. These functions have
yielded important insights into both the statistical properties and possible dynam-
ical origin of the clustering pattern. An important aspect of this is a connection,
which we have no space to explore here, between the correlation functions and a
dynamical description of self-gravitating systems in terms of the set of equations
that make up the BBGKY hierarchy (Davis and Peebles 1977).
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Figure 16.3 Different topologies of graphs connecting the N points for computing cor-
relation functions in the hierarchical model; graphs for N = 3, 4 and 5 are shown.

Nevertheless, the statistical information contained in these functions is limited.
In order to have a complete statistical description of the properties of a point dis-
tribution we need to know all the finite-order correlation functions. Given the
computational labour required to extract even the low-order functions from a
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large sample, this is unlikely to be achieved in practice. This problem is exacer-
bated by the fact that the correlation functions, even the two-point function, are
very difficult to determine from observations on large scales where the evolution
of ξ is close to linear and analytical theory is consequently most reliable. For this
reason, and the difficulty of disentangling effects of bias from dynamical evolu-
tion, it is necessary to look for other statistical descriptions; we shall describe
some of these in Sections 16.6–16.10.

16.6 Cluster Correlations and Biasing

As we mentioned above, the correlation function analysis can be applied to other
kinds of distributions, including quasars and radio galaxies. In this section we
shall concentrate on rich clusters of galaxies; we shall also restrict ourselves to the
two-point correlation properties of these objects since the sizes of these samples
make it difficult to obtain accurate estimates of higher-order functions. The two-
point correlation function for Abell clusters (those containing at least 65 galaxies
within the ‘Abell radius’ of around 1.5h−1 Mpc) is found to be

ξc(r) �
(
r
r0c

)−γ
, (16.6.1)

where 5h−1 Mpc � r � 75h−1 Mpc, r0c � 12–25h−1 Mpc and γ � 1.8. The similar-
ity in shape between (16.6.1) and the galaxy version (16.4.5) is interesting. There
is, however, considerable uncertainty about the correct value of the correlation
length r0c for these objects because of the possible, indeed probable, existence
of systematic errors accumulated during the compilation of the Abell catalogue.
Cluster catalogues recently compiled using automated plate-measuring devices
suggest values towards the lower end of the quoted range, while the richest Abell
clusters (those with more than 105 galaxies inside an Abell radius) may have a
correlation length as large as 50h−1 Mpc. There is indeed some evidence that the
correlation length scales with the richness (i.e. density) of the clusters and is con-
sequently higher for the denser, and hence rarer, clusters. It has been suggested
that this correlation can be expressed by the relationship

ξi(r) �
(
r
r0c,i

)−γ
� Ci

(
r
li

)−γ [
Ci �

(r0c,i
li

)γ
� const. � 0.4

]
(16.6.2)

between the correlation length r0c,i and the mean separation li of subsamples
selected according to a given richness threshold. The self-similar form of (16.6.2)
can be interpreted intuitively as a kind of fractal structure.
The self-similar properties that seem to be implied by both observations and

the theory described above lead one naturally to a description of the mass dis-
tribution in the language of fractal sets. The prevalence of techniques based on
fractal geometry in fields such as condensed matter physics has given rise to a
considerable interest in applying these methods to the cosmological context.
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To get a rough idea of the fractal description consider the mass contained in a
small sphere of radius r around a given galaxy, denoted M(r). In the case where
ξ(r)� 1 we have

M(r)∝ ξ(r)r 3 ∝ rD2 , (16.6.3)

with D2 = 3−γ: since ξ(r) has a power-law form with a slope of around γ � 1.8,
then we have M(r) ∝ r 1.2. In the language of fractals, this corresponds to a
correlation dimension of D2 � 1.2. One can interpret this very simply by not-
ing that, if the mass is distributed along one-dimensional structures (filaments),
then M(r) ∝ r ; two-dimensional sheets would have M ∝ r 2 and a space-filling
homogeneous distribution would have M ∝ r 3. A fractional dimension like that
observed indicates a fractal structure.
The first convincing explanation of the relationship between (16.6.1) and

(16.4.5) was given by Kaiser (1984). He supposed that galaxy and cluster formation
proceeded hierarchically from Gaussian initial conditions in the manner outlined
in Section 14.4. If this is the case, then clusters, on mass scales of order 1015M�,
must have formed relatively recently. Moreover, rich clusters are extremely rare
objects, with a mean separation of order 60h−1 Mpc. It is natural therefore to
interpret rich clusters as representing the high peaks of a density field which is
still basically evolving linearly: the collapse of the highest peaks will not alter the
properties of the ‘average’ density regions significantly. Applying the spherical
‘top-hat’ collapse model of Section 15.1, the collapse to a bound structure occurs
when, roughly speaking, the linearly evolved value of the density perturbation, δ,
on the relevant scale reaches a value δc � 1.68. If Ω � 1, which we assume for
simplicity, then the collapse time tcoll will be given by

tcoll � t0
(
1.68
νσ

)3/2
, (16.6.4)

where t0 is the present epoch, σ is the RMS mass fluctuation on the scale of
clusters and δ = νσ is the value of δ obtained from linear theory. The final
overdensity of the collapsed structure with respect to the background universe
will be, at collapse (see Section 15.1),

δf � 180
(
t0
tcoll

)2
, (16.6.5)

so that structures which collapse earlier have a higher final density. For t0 � tcoll �
t0/2 we have 1.7 � νσ � 2.4 and 180 � δf � 720. A small difference in collapse
time and, therefore, a small difference in ν produces objects with very different
final density. For this reason it is reasonable to interpret clusters as being den-
sity ‘peaks’, i.e. as regions where δ exceeds some sharp threshold. On large scales
we can use the high-peak biasing formalism described in Section 14.8; the rela-
tionship between the correlation function of the ‘peaks’ and the covariance func-
tion of the underlying matter distribution is therefore given by Equation (14.8.5).
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For simplicity we assume that galaxies trace the mass, so that equation (14.8.5)
becomes

ξc(r) �
(
ν
σ

)2
ξg(r), (16.6.6)

which, for appropriate choices of ν and σ , can reconcile (16.4.5) with (16.6.1).
The model also explains how one might get an increased correlation length with
richness: higher peaks have higher ν and correspond to denser systems.
This elucidation of the reason why clusters should have stronger correlations

than galaxies is natural because clusters are, by definition, objects with exception-
ally high density on some well-defined scale. Kaiser’s calculation was, however,
subsequently used as the basis for the first models of biased galaxy formation
described in Section 14.8. For it to apply to galaxies, however, one has to think
of a good reason why galaxies should only form at particularly dense peaks of
the matter distribution: some mechanism must be invoked to suppress galaxy
formation in ‘typical’ fluctuations. One should therefore take care to distinguish
between the apparent biasing of clusters relative to galaxies and the biasing of
galaxies relative to mass; the former is well-motivated physically, the latter, at
least with our present understanding of galaxy formation, is not.
In any event, one of the advantages of the cluster distribution is that it can

be used to measure correlations on scales where the galaxy–galaxy correlation
function vanishes into statistical noise. The cluster–cluster correlation function
seems to be positive out to at least 50h−1 Mpc, while the galaxy–galaxy function
is very small, and perhaps negative, for r � 10h−1 Mpc.

16.7 Counts in Cells

A simple but useful way of measuring the correlations of galaxies on large scales
which does not suffer from the problems of the correlation functions is by looking
at the distribution of counts of galaxies in cells, Pn(V). This is defined as the
probability of finding n objects in a randomly placed volume V , or the low-order
moments of this distribution such as the variance σ 2 and skewness γ which we
define below; do not confuse γ with the slope of the two-point correlation function
in Equation (16.4.2) or with the spectral parameter in equation (13.2.11). Indeed
some of the earliest quantitative analyses of galaxy clustering by Hubble adopted
the counts-in-cells approach.
Using only the moments of the cell-count distribution does result in a loss of

information comparedwith the use of the full distribution function, but the advan-
tage is a simple relationship between the moments and the correlation functions,
e.g.

σ 2 ≡
〈(
∆n
n̄

)2

= 1
n̄
+ 1
V2

∫∫
ξ(2)(r12)dV1 dV2, (16.7.1)

where n̄ is the mean number of galaxies in a cell of volume V , i.e. n̄ = nVV (nV
is the mean number-density of galaxies). The derivation of this formula for the
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variance is quite straightforward. Consider a set of n points (galaxies) distributed
in a cell of volume V . Divide the cell into infinitesimal sub-cells dVk and let each
containnk galaxies. If the dVk are small enough, thennk can only be 0 or 1. Clearly
n =∑nk. The expected number of galaxies in the cell is

〈n〉 = n̄ =
∑
〈nk〉 =

∫
V
ndV = nVV. (16.7.2)

The mean squared value of n is

〈n2〉 =
∑
〈n2k〉 +

∑
k≠l

〈nknl〉. (16.7.3)

Because nk is only either 0 or 1, the first term must be the same as
∑〈nk〉; the

second term is obviously just n2V dV1 dV2(1+ ξ12), so that

〈n2〉 = nVV + (nVV)2 +n2V
∫
ξ12 dV1 dV2. (16.7.4)

The form (16.7.1) then follows when the result is expressed in terms of

〈(
n− n̄
n̄

)2

=
〈(
∆n
n̄

)2

. (16.7.5)

The 1/n̄ term in Equation (16.7.1) is due to Poisson fluctuations: it is a discreteness
effect. Apart from this, the second-order moment is simply an integral of the two-
point correlation function over the volume V , and is therefore related to the mass
variance defined by Equation (13.3.8) for a sharp window function. The same is
true for higher-order moments, but the discreteness terms are more complicated
and the integrals must be taken over the cumulants. For example, following a
similar derivation to that above, the skewness γ can be written

γ ≡
〈(
∆n
n̄

)3

= − 2

n̄2
+ 3σ 2

n̄
+ 1
V3

∫∫∫
ξ(3) dV1 dV2 dV3. (16.7.6)

Equation (16.7.1) provides a good way of measuring the two-point correlation
function on large scales. Use of the skewness and higher-order moments descrip-
tors is now also possible. The usual formulation is to write the ratio of the Nth-
order moment to the (N−1)th power of the variance as SN . For example, in terms
of γ and σ 2, the hierarchical parameter S3 is just γ/σ 4. In the hierarchical model
the SN should be constant, independent of the cell volume. For the simple hier-
archical distribution (16.5.1) we have S3 = 3Q, which seems to be in reasonable
agreement with measured skewnesses. There should be some scale dependence
of clustering properties if the initial power spectrum is not completely scale free,
so one would not expect S3 to be accurately constant on all scales in, for example,
the CDM model. It is, however, a very slowly varying quantity. Within the consid-
erable errors, there seems to be a roughly hierarchical behaviour of the clustering
data consistent with most gravitational instability models of structure formation.
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This is further confirmation of the comments we made in Section 16.4 about the
success of the hierarchical model.
Although it is encouraging that these different approximations do agree with

each other to a reasonable degree and also seem to behave in roughly the same
way as the data, it is advisable to be cautious here. The skewness is a relatively
crude statistical descriptor and many different non-Gaussian distributions have
the same skewness, but very different higher-order moments. One could proceed
bymeasuring higher and higher ordermoments from the data, but this is probably
not a very efficient way to proceed. It is perhaps better to focus instead upon the
distribution function of cell counts, Pn(V), rather than its moments. The problem
is that, except for a few special cases, it is not possible to derive the distribution
function analytically even in the limit of large V .
The distribution function of galaxy counts leads naturally on to the void prob-

ability function (VPF), the probability that a randomly selected volume V is com-
pletely empty. Properties of voids are also appealing for intuitive reasons: these
are the features that stand out most strikingly in the visual appearance of the
galaxy distribution. The generating function of the count probabilities, defined by

P(λ) ≡
∞∑
N=0
λNPN(V), (16.7.7)

can be shown to be a sum over the ‘averaged’ connected correlation functions of
all orders,

logP(λ) =
∞∑
N=1

(λ− 1)N

N !
(n̄)Nξ̄(N), (16.7.8)

(White 1979), where

ξ̄(N) ≡ 1
VN

∫
· · ·

∫
ξ(N)(rij)dV1 · · · dVN. (16.7.9)

Setting λ = 0 in Equation (16.7.8), we obtain

log P0(V) =
∞∑
N=1

(−n̄)N
N !

ξ̄(N) (16.7.10)

as long as this sum converges. The VPF is quite easy to extract from simulations
or real data and depends strongly upon correlations of all orders; it is therefore
a potentially useful diagnostic of the clustering. Studies of the VPF again seem to
support the view that clustering on scales immediately accessible to observations
is roughly hierarchical in form.
Although the VPF is unquestionably a useful statistic, it pays no attention to the

geometry of the voids, or their topology. Typically one uses a spherical test vol-
ume, so a flat or filamentary void will not register in the VPF with a V correspond-
ing to its real volume. Moreover, because the voids which seem most obvious to
the eye are not actually completely empty: these do not get counted at all in the
VPF statistic. The search for a better statistic for describing void probabilities is
under way and is an important task.
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16.8 The Power Spectrum

There are many advantages, particularly on large scales, in not measuring the
two-point correlation function directly, but through its Fourier transform. The
Wiener–Khintchine theorem (13.8.5) shows that, for a statistically homogeneous
random field, the two-point covariance function is the Fourier transform of the
power spectrum. One might expect therefore that one can define a useful power
spectrum for galaxy clustering which is the inverse of the two-point correlation
function. For power-law primordial spectra P(k)∝ kn, one can show that ξ(r)∝
− sin(πn/2)r−(3+n) (n > −3), which can be used to deduce the power spectrum
from a knowledge of ξ in regions where it can be represented as a power law.
On the other hand, one would imagine that a better procedure is to estimate
P(k) directly from the data without worrying about ξ(r), particularly on large
scales. This is indeed the case. There are some subtleties, however, because the
discreteness of the galaxy counts induces a ‘white-noise’ contamination into the
power spectrum which must be removed.
For a discrete distribution ofN points (galaxies) we can define the Fourier trans-

form as

δ(k) = 1
N

∑
exp(ik · x), (16.8.1)

where the sum is taken over all galaxy positionsx. If the distributionwere random,
the coefficients δ(k) would be generated by a random walk in the complex plane.
It is then straightforward to show that the variance of the modulus of δ(k) is
given by

〈|δ(k)|2〉 = 1
N
. (16.8.2)

In principle, one can therefore just subtract the quantity 1/N from the quantity
|δ(k)|2 determined by (16.8.1). In fact, the power spectrum is estimated over a
region of k-space which defines an interval in the modulus of k, denoted k. One
therefore needs to subtract off the ‘shot-noise’ contribution for each k which
enters this estimate, so that

P(k) �
∑
k
|δ(k)|2 − nk

N
, (16.8.3)

where nk is the number of k modes involved in the sum.
Even this does not work, however, unless we have a cubic sample volume (which

is unlikely to be the case). It is necessary, in fact, to think of the observed sam-
ple as being a modulation of the real density field by some selection function
f(x), which can also take account of the fact that some galaxies will be missed
at larger distances from the observer in a survey limited by apparent magnitude.
To account for this, one therefore has to subtract off from δ(k) the Fourier trans-
form of f(x) before doing the subtraction in (16.8.3). One also has to correct for
the effect of f at modulating the Fourier coefficients of δ. It turns out that the
observed power spectrum is just a convolution of the ‘true’ power spectrum with
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the function |fk|2, the squared modulus of the Fourier transform of f(x). This
also induces an error in nk, since the number of kmodes depends on the volume
after modulation, rather than on the idealised cubic volume mentioned above.
Correcting for all these effects requires some care.
To be precise, P(k) is actually a spectral density function, and should have units

of volume. To avoid the possible dependence of P(k) upon the sample volume
it is more useful to deal for comparison purposes with a dimensionless power
spectrum∆2(k) � k3P(k) in themanner of Equation (14.2.8). The power spectrum
of galaxy clustering has been analysed for a number of different samples and the
results are reasonably well fitted by the functional form:

∆2(k) = (k/k0)1.6

1+ (k/kc)−2.4 . (16.8.4)

The best-fitting value for the parameters are kc � 0.015–0.025h Mpc−1 and k0 �
0.19h Mpc−1, but k0 depends quite sensitively upon the accuracy of the various
selection functions. This form, on large scales, is similar to a low-density CDM
spectrum or a CHDM spectrum; see Figure 16.4. The power spectrum of Abell
cluster correlations has also been computed; the results are consistent with a
rather large value for the correlation length, r0 � 21h−1 Mpc, and indicate that
the clustering strength does depend on the cluster richness, as one might expect
from the discussion in Section 16.5.

16.9 Polyspectra

Since the power spectrum is the Fourier transform of the two-point correlation
function, it would seem likely that similar transforms of the N-point functions
for N > 2 would also prove to be useful descriptors of galaxy clustering. For
example, the Fourier transform of the three-point correlation function is known
as the bispectrum. The use of higher-order spectra is not yet widespread, but
they will probably turn out to be a very effective way of detecting non-Gaussian
fluctuation statistics on very large scales and of constraining the gravitational
instability picture generally.
To see why, consider the application of the power spectrum to a continuous

density contrast field as in Chapters 10–15, i.e. δ(x) defined by

δ(x) = [ρ(x)− ρ0]/ρ0, (16.9.1)

where ρ0 is the average density and ρ(x) is the local matter density. Because
the initial perturbations evolve linearly, it is useful to expand δ(x) as a Fourier
superposition of plane waves:

δ̃(k) =
∫
dxδ(x) exp(−ik · x). (16.9.2)
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Figure 16.4 Comparison of the power spectrum of galaxy clustering with various CDM
models having different values of the shape parameter Γ . They-axes show∆2 = k3P(k) as
a function of k; the data points are from a compilation of redshift surveys before (upper
panel) and after (lower panel) allowances are made for bias and velocity effects. Picture
courtesy of John Peacock.

The Fourier transform δ̃(k) is complex and therefore possesses both amplitude
|δ̃(k)| and phase φk, where

δ̃(k) = |δ̃(k)| exp(iφk). (16.9.3)
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Figure 16.5 Numerical simulation of galaxy clustering (left) together with a version gen-
erated randomly reshuffling the phases between Fourier modes of the original picture
(right). The reshuffling operation preserves the reality of the original image.

Gaussian random fields possess Fourier modes whose real and imaginary parts
are independently distributed. In other words, they have phase anglesφk that are
independently distributed and uniformly random on the interval [0,2π]. When
fluctuations are small, i.e. during the linear regime, the Fourier modes evolve
independently and their phases remain random. In the later stages of evolution,
however, wave modes begin to couple together. In this regime the phases become
non-random and the density field becomes highly non-Gaussian (Coles and Chiang
2000). Phase coupling is therefore a key consequence of nonlinear gravitational
processes if the initial conditions are Gaussian. Such phenomena consequently
display a potentially powerful signature to exploit in statistical tests of this class
of models.
A graphic demonstration of the importance of phases in patterns generally is

given in Figure 16.5. The power spectrum P(k) is formally defined by an expres-
sion of the form

〈δ(k1)δ(k2) = (2π)3P(k)δD(k1 + k2); (16.9.4)

to take account of the fact that the density field is real we have that δk = δ∗−k. Since
the amplitude of each Fourier mode is unchanged in the phase-reshuffling opera-
tion shown in Figure 16.5, the two pictures have exactly the same power spectrum,
P(k). In fact, they have more than that: they have exactly the same amplitudes for
all k. They also have totally different morphology. The shortcomings of P(k) as a
descriptor of pattern can be partly ameliorated by defining higher-order quanti-
ties such as the bispectrum (Peebles 1980; Matarrese et al . 1997; Scoccimarro et
al . 1999). The bispectrum is simply a three-point correlation function in redshift
space. By analogy with (16.9.5) we have

〈δ(k)δ(k′) = (2π)3B(k1,k2,k3)δD(k1 + k2 + k3). (16.9.5)
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The bispectrum is zero unless the three vectors ki form a triangle. The function
B(k1,k2,k3) is particularly useful in redshift space, a fact we shall revisit in more
detail in Chapter 18.
This idea can be generalised to arbitrary order correlations in Fourier space –

the polyspectra. Alternatively, one can study correlations of quantities like δ̃(k)2

(Stirling and Peacock 1996). This is a special case of a four-point correlation func-
tion in Fourier space.

16.10 Percolation Analysis

Useful though the correlation functions and related quantities undoubtedly are,
their interpretation is problematic, except perhaps in the framework of a model
such as the hierarchical model. In particular, it is difficult to give a geometrical
interpretation to the correlation functions. For this reason, it is useful to develop a
different kind of statistical description of galaxy clustering which is more directly
related to geometry. We would be interested particularly in a descriptor which
revealed whether the distribution has a significant tendency to cluster in sheets,
filaments or isolated clumps.
One possible such description is furnished by percolation analysis, which we

now describe (Shandarin 1983; Dekel and West 1985). Imagine we have a cubic
sample of the Universe of side L, containingN � 1 points (galaxies, clusters, etc.).
Let us trace a sphere around each point of diameter d = bl̄, where l̄ = L/N1/3 is
the mean interparticle distance. If the spheres around two points overlap with
each other, then we connect the two points: they become ‘friends’. If one of the
spheres connects with another point, then those two points become ‘friends’ also.
Applying the principle ‘the friend of my friend is also my friend’, all three points
now become connected. At a given value of b, therefore, the distribution will
consist of some isolated points and some connected ‘clusters’ (sets of ‘friends
of friends’). For very small b all points will be isolated (nobody has any friends),
while, for large b, all points will be connected (everybody is friends with everybody
else). As b increases the number of clusters therefore decreases fromN to 1, while
the typical number of points per cluster increases from 1 to N . For a particular
value, say bc (at least) one cluster forms which can connect two opposite faces
of the cube. At this point the system is said to have percolated, and bc is the
percolation parameter. (Sometimes in the literature the quantity Bc = 4πb3c/3 is
called the percolation parameter.) The value of bc depends on the geometry of the
spatial distribution of the points, on N and on L. Let us illustrate this with some
simple examples.
For a uniform distribution of points on a cubic lattice it is clear that bc = 1. For a

uniform distribution of particles in parallel planes of thickness h L, separated
from each other by a distance λ, percolation will be completed in each plane at a
value of the percolation parameter

bc =
(
h
λ

)1/3
< 1. (16.10.1)
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For a regular distribution on bars of square cross-section with side h L, sepa-
rated by a distance λ, percolation again occurs simultaneously along each bar at
a value of bc given by

bc =
(
h
λ

)2/3
 1. (16.10.2)

Compared with a uniform distribution within a cube of side L, percolation occurs
more easily, i.e. at a smaller value of bc, for a distribution on parallel planes and
even more easily for a distribution on parallel bars.
For a uniform distribution in small cubes of side h L, separated by a distance

λ, clearly the critical distance dc = bcl̄ is given by λ− h, so that

bc = λ− hl̄ = λ
l̄

(
1− h

λ

)
� λ
l̄
> 1 : (16.10.3)

in this case percolation is more difficult than in the uniform case, or in the case
of planes or bars.
It has been shown that, if the points are distributed randomly, the values of bc

from sample to sample are distributed according to a Gaussian distribution with
a mean value and dispersion which decrease as N increases; in particular we have
bc,N→∞ � 0.87.
A percolation analysis of the Local Supercluster has given an estimate bc � 0.67,

less than that expected for a random distribution. This is some empirical confir-
mation of the existence of some kind of geometrical structure, though it is difficult
to say whether it means filaments or sheets. Indeed, according to N-body exper-
iments, it seems that the values of b are not particularly sensitive to different
choices of power spectrum, even for extremes such as HDM and CDM. This does
not, however, mean that percolation analysis is not useful. There are many other
diagnostics of the transition into the percolated regime in addition to bc. For exam-
ple, it has been suggested that a useful method might be to look at the increase
in the number of members of the second largest cluster as a function of b; the
largest cluster essentially determines bc, but there will be many smaller clusters
whose behaviour might be more sensitive to details of the spectrum than bc. One
might also look at the distribution function of the sizes of percolated regions.
Despite its simple geometrical interpretation and apparent effectiveness, perco-
lation theory is relatively neglected in cosmological studies, although it is used
extensively, for example, in condensed matter physics; see Stauffer and Aharony
(1992). An example of the effective use of percolation methods is given in Sahni
et al . (1997).
Incidentally, a variant of percolation analysis is used inN-body simulations and

in the making of catalogues of galaxy groups to identify overdense regions. In this
context, particles are connected together by a friends-of-friends algorithm in the
same way as was discussed above, but for these studies a value of b in the range
0.2–0.4 is usually used to define clusters and b is called the linking parameter in
such applications.
We should also mention that many other statistics have been suggested for

detecting and quantifying sheets and filaments in the galaxy distribution using
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techniques from many diverse branches of mathematics, including graph theory
and combinatorics; see, for example, Sahni et al . (1998). Although these have
yet to yield dramatically interesting results, their likely sensitivity to high-order
correlations makes it probable that they will come into their own when the next
generation of very large-scale redshift surveys are available for analysis.

16.11 Topology

Interesting though the geometry of the galaxy distribution may be, such studies
do not tell us about the topology of clustering or, in other words, its connectivity.
One is typically interested in the question of how the individual filaments, sheets
and voids join up and intersect to form the global pattern. Is the pattern cellu-
lar, having isolated voids surrounded by high-density sheets, or is it more like a
sponge in which under- and over-dense regions interlock?
Looking at ‘slice’ surveys gives the strong visual impression that we are dealing

with bubbles; pencil beams (deep galaxy redshift surveys with a narrow field of
view, in which the volume sampled therefore resembles a very narrow cone or
‘pencil’) reinforce this impression by suggesting that a line of sight intersects at
more-or-less regular intervals with walls of a cellular pattern. One must be careful
of such impressions, however, because of elementary topology. Any closed curve
in two dimensions must have an inside and an outside, so that a slice through
a sponge-like distribution will appear to exhibit isolated voids just like a slice
through a cellular pattern. It is important therefore that we quantify this kind of
property using well-defined topological descriptors.
In an influential series of papers, Gott and collaborators have developed a

method for doing just this (Gott et al . 1986; Hamilton et al . 1986; Gott et al .
1989, 1990; Melott 1990). Briefly, the method makes use of a topological invariant
known as the genus, related to the Euler–Poincaré characteristic, of the isodensity
surfaces of the distribution. To extract this from a sample, one must first smooth
the galaxy distribution with a filter (usually a Gaussian is used; see Section 14.3)
to remove the discrete nature of the distribution and produce a continuous den-
sity field. By defining a threshold level on the continuous field, one can construct
excursion sets (sets where the field exceeds the threshold level) for various den-
sity levels. An excursion set will typically consist of a number of regions, some
of which will be simply connected, e.g. a deformed sphere, and others which will
be multiply connected, e.g. a deformed torus is doubly connected. If the density
threshold is labelled by ν , the number of standard deviations of the density away
from the mean, then one can construct a graph of the genus of the excursion
sets at ν as a function of ν : we call this function G(ν). The genus can be for-
mally expressed as an integral over the intrinsic curvature K of the excursion set
surfaces, Sν , by means of the Gauss–Bonnet theorem.
The general form of this theorem applies to any two-dimensional manifold M

with any (one-dimensional) boundary ∂M which is piecewise smooth. This latter
condition implies that there are a finite number n vertices in the boundary at
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which points it is not differentiable. The Gauss–Bonnet theorem states that

n∑
i=1
(π −αi)+

∫
∂M
kg ds +

∫
M
kdA = 2πχE(M), (16.11.1)

where the αi are the angle deficits at the vertices (the n interior angles at points
where the boundary is not differentiable), kg is the geodesic curvature of the
boundary in between the vertices and k is the Gaussian curvature of the mani-
fold itself. Clearly ds is an element of length taken along the boundary and dA is
an area element within the manifoldM. The right-hand side of Equation (16.11.1)
is the Euler–Poincaré characteristic, χE, of the manifold.
This probably seems very abstract but the definition (16.11.1) allows us to con-

struct useful quantities for both two- and three-dimensional examples. If we have
an excursion set as described above in three dimensions, then its surface can be
taken to define such a manifold. The boundary is just where the excursion set
intersects the limits of the survey and it will be taken to be smooth. Ignoring this,
we see that the Euler–Poincaré characteristic is just the integral of the Gaussian
curvature over all the compact bits of the surface of the excursion set. Hence, in
this case,

2πχE =
∫
Sν
K dS = 4π[1−G(ν)]. (16.11.2)

Roughly speaking, the quantity G is the genus, which for a single surface is the
number of ‘handles’ the surface possesses; a sphere has no handles and has zero
genus, a torus has one and therefore has a genus of one. For technical reasons
to do with the effect of boundaries, it has become conventional not to use G but
GS = G − 1. In terms of this definition, multiply connected surfaces have GS � 0
and simply connected surfaces have GS < 0. One usually divides the total genus
GS by the volume of the sample to produce gS , the genus per unit volume.
One of the great advantages of using the genus measure to study large-scale

structure, aside from its robustness to errors in the sample, is that all Gaussian
density fields have the same form of gS(ν):

gS(ν) = A(1− ν2) exp(−1
2ν

2), (16.11.3)

where A is a spectrum-dependent normalisation constant. This means that, if
one smooths the field enough to remove the effect of nonlinear displacements
of galaxy positions, the genus curve should look Gaussian for any model evolved
from Gaussian initial conditions, regardless of the form of the initial power spec-
trum, which only enters through the normalisation factor A. This makes it a
potentially powerful test of non-Gaussian initial fluctuations, or of models which
invoke non-gravitational physics to form large-scale structure. The observations
support the interpretation that the initial conditions were Gaussian, although the
distribution looks non-Gaussian on smaller scales. The nomenclature for the non-
Gaussian distortion one sees is a ‘meatball shift’: nonlinear clustering tends to
produce an excess of high-density simply connected regions, compared with the
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Figure 16.6 Genus curve for galaxies in the IRAS PSCz survey. The noisy curve is the
smoothed galaxy distribution, while the solid line is the best-fitting curve for a Gaussian
field, Equation (16.11.3). Picture courtesy of the PSCz team.

Gaussian curve. The opposite tendency, usually called ‘Swiss cheese’, is to have
an excess of low-density simply connected regions in a high-density background,
which is what one might expect to see if cosmic explosions or bubbles formed
the large-scale structure. What one would expect to see in the standard picture of
gravitational instability from Gaussian initial conditions is a ‘meatball’ topology
when the smoothing scale is small, changing to a sponge as the smoothing scale
is increased. This is indeed what seems to be seen in the observations so there is
no evidence of bubbles; an example is shown in Figure 16.6.
The smoothing required also poses a problem, however, because present red-

shift surveys sample space only rather sparsely and one needs to smooth rather
heavily to construct a continuous field. A smoothing on scales much larger than
the scale at which correlations are significant will tend to produce a Gaussian
distribution by virtue of the central limit theorem. The power of this method is
therefore limited by the smoothing required, which, in turn, depends on the space-
density of galaxies. An example is shown in Figure 16.6, which shows the genus
curve for the PSCz survey of IRAS galaxies.
Topological information can also be obtained from two-dimensional data sets,

whether these are simply projected galaxy positions on the sky (such as the Lick
map, or the APM survey) or ‘slices’ (such as the various Center for Astrophysics
(CfA) compilations). Here the excursion sets one deals with are just regions of the
plane where the (surface) density exceeds some threshold. In this case we imagine
the manifold referred to in the statement of the Gauss–Bonnet theorem to be not
the surface of the excursion set but the surface upon which the set is defined
(i.e. the sky). For reasonably small angles this can be taken to be a flat plane so
that the Gaussian curvature ofM is everywhere zero. (The generalisation to large
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angles is trivial; it just adds a constant-curvature term.) The Euler characteristic
is then simply an integral of the line curvature around the boundaries of the
excursion set:

2πχE =
∫
kg ds. (16.11.4)

In this case the Euler–Poincaré characteristic is simply the number of isolated
regions in the excursion set minus the number of holes in such regions.
This is analogous to the genus, but has the interesting property that it is an odd

function of ν for a two-dimensional Gaussian random field, unlike G(ν) which is
even. In fact the mean value of χ per unit area on the sky takes the form

χ(ν) = Bν exp(−1
2ν

2), (16.11.5)

where B is a constant which depends only on the (two-dimensional) power spec-
trum of the random field. Notice that χ < 0 for ν < 0 and χ > 0 for ν > 0. A curve
shifted to the left with respect to this would be a meatball topology, and to the
right would be a Swiss cheese.
There are some subtleties with this. Firstly, as discussed above, two-dimensional

topology does not really distinguish between ‘sponge’ and ‘Swiss cheese’ alterna-
tives. Indeed, there is no two-dimensional equivalent of a sponge topology: a slice
through a sponge is topologically equivalent to a slice through Swiss cheese. Nev-
ertheless, it is possible to assess whether, for example, the mean density level
(ν = 0) is dominated by underdense or overdense regions so that one can distin-
guish Swiss cheese and meatball alternatives to some extent. The most obviously
useful application of thismethod is to look at projected catalogues, themain prob-
lem being that, if the catalogue is very deep, each line of sight contains a super-
position of many three-dimensional structures. This projection acts to suppress
departures from Gaussian statistics by virtue of the central limit theorem. Never-
theless, useful information is obtainable from projected data simply because of
the size of the data sets available; as is the case with three-dimensional studies,
the analysis reveals a clear meatball shift, which is what one expects in the grav-
itational instability picture. The methods used for the study of two-dimensional
galaxy clustering can also be used to analyse the pattern of fluctuations on the
sky seen in the cosmic microwave background.
More recently, this approach has been generalised to include not just the Euler–

Poincaré distribution but all possible topological invariants, i.e. all characteristic
quantities that satisfy the requirements that they be additive, continuous, trans-
lation invariant and rotation invariant. For an excursion set defined in d dimen-
sions there are d + 1 such quantities that can be regarded as independent. Any
characteristic satisfying these invariance properties can be expressed in terms of
linear combinations of these four independent quantities. These are usually called
Minkowski functionals. Their use in the analysis of galaxy-clustering studies was
advocated by Mecke et al . (1994) and has become widespread since then.
In three dimensions there are four Minkowski functionals. One of these is

the integrated Gaussian curvature (equivalent to the genus we discussed above).
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Another is the mean curvature, H, defined by

H = 1
2

∫ (
1
R1

+ 1
R2

)
dA. (16.11.6)

In this expression R1 and R2 are the principal radii of curvature at any point in
the surface; the Gaussian curvature is 1/(R1R2) in terms of these variables. The
other two Minkowski functionals are more straightforward. They are the surface
area of the set and its volume. These four quantities give a ‘complete’ topological
description of the excursion sets.

16.12 Comments

In this chapter we have attempted to give a reasonably complete, though by no
means exhaustive, overview of the statistical analysis of galaxy clustering. In addi-
tion to those we have described here, many other statistical descriptors have been
employed in this field, particularly with respect to the problem of detecting fila-
ments, sheets and voids in the large-scale distribution. More are sure to be devel-
oped in the future, and the next generation of galaxy redshift surveys will surely
furnishmore accurate estimators of those statistics we have had space to describe
here. By way of a summary, it is useful to delineate some common strands revealed
by the various statistical approaches described in this chapter.
To begin with, a variety of methods give relatively direct constraints on the

power spectrum of the matter fluctuations; the two-point correlation function,
the galaxy power spectrum and the variance of the counts-in-cells distribution
are all related in a relatively simple way to this. Two problems arise here, how-
ever. One is the ubiquitous problem of bias we discussed in Chapter 15. In the
simplest conceivable case of a linear bias, the various statistics extracted from
galaxy clustering, ξ(r), ∆2(k) and σ 2, are all a factor b2 higher than the cor-
responding quantities for the mass fluctuations. In a more complicated biasing
model, the relationship between galaxy and mass statistics may be considerably
more obscure than this. The second problem is that we have dealt almost exclu-
sively with the distribution of galaxies in redshift space. The existence of peculiar
motionsmakes the relationship between real space and redshift space rather com-
plicated. This problem is, however, potentially useful in some cases, because the
distortion of various statistics in redshift space relative to real space can, at least
in principle, give information indirectly about the peculiar velocities and hence
about the distribution of mass fluctuations through the continuity equation; we
return to this matter in Chapter 18. Within the uncertainties introduced by these
factors, a consensus has emerged from these studies that the power spectrum
of galaxy clustering is consistent with the shape described by Equation (16.8.4),
i.e. with a different shape to the standard CDM scenario, but approximately fitted
by a low-density CDM transfer function.
Measures of the topology and geometry of galaxy clustering are less effective

at constraining the power spectrum, but relate to different ingredients of mod-
els of structure formation. Percolation analysis, and other pattern descriptors
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not mentioned here, give qualitative confirmation of the existence of Zel’dovich
pancakes and filaments as expected in gravitational instability theories. The
behaviour of higher-order moments lends further credence to the this picture.
Large-scale topology has failed to show up any significant departures from Gaus-
sian behaviour. It seems reasonable therefore to describe all this evidence as being
consistent with the basic scenario of structure formation by gravitational insta-
bility which we have sought to describe in this book. We shall see that further
support for this general picture is furnished by fluctuations in the CMB tempera-
ture (Chapter 17) and studies of galaxy-peculiar motions (Chapter 18).

Bibliographic Notes on Chapter 16

The classic reference work for statistical cosmology is Peebles (1980). A more
modern survey of statistical methods for cosmology applications is given by
Martínez and Saar (2002). Further useful sources are Saslaw (1985) and Peacock
(1992). Fall (1979) is also full of interesting ideas.

Problems

1. Suppose the Universe consists of a spherically symmetric distribution of galaxies
with density profile n = n0r−α. Using an appropriate definition of the two-point
correlation function, ξ(r), show that

ξ(r)∝ r 3−2α.

2. Assume the galaxy distribution consists of a collection of spherical clusters con-
taining different numbers of galaxies n. Let the number of clusters per unit volume
as a function of n be proportional to n−β and assume all clusters containing exactly
n galaxies have a radius rn ∝ nα. Show that, for ξ(r)� 1 and r small,

ξ(r)∝ r−3+(3/α)−β/α.

3. Enumerate the twelve distinct snake graphs and the four distinct star graphs for
N = 4, as shown in Figure 16.3.

4. Show that, for a hierarchical distribution, the skewness of the cell-count fluctua-
tions, γ, is related to the variance, σ 2, via γ = 3Qσ 4.

5. Identify the three Minkowski functionals needed to characterise an excursion set in
two dimensions.
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The Cosmic
Microwave
Background

17.1 Introduction

The detection of fluctuations in the sky temperature of the cosmic microwave
background (CMB) in 1992 by the COBE team led by George Smoot was an impor-
tant milestone in the development of cosmology (Bennett et al . 1992; Smoot et
al . 1992; Wright et al . 1992). Aside from the discovery of the CMB itself, it was
probably the most important event in this field since Hubble’s discovery of the
expansion of the Universe in the 1920s. The importance of the COBE detection lies
in the way these fluctuations are supposed to have been generated. As we shall
explain in Section 17.4, the variations in temperature are thought to be associated
with density perturbations existing at trec. If this is the correct interpretation, then
we can actually look back directly at the power spectrum of density fluctuations
at early times, before it was modified by nonlinear evolution and without having
to worry about the possible bias of galaxy power spectra.
The search for anisotropies in the CMB has been going on for around 35 years.

As the experiments got better and better, and the upper limits placed on the
possible anisotropy got lower and lower, theorists concentrated upon construct-
ing models which predicted the smallest possible temperature fluctuations. The
baryon-only models were discarded primarily because they could not be modified
to produce low enough CMB fluctuations. The introduction of dark matter allowed
such a reduction and the culmination of this process was the introduction of bias,
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which reduces the expected temperature fluctuation still further. It was an inter-
esting experience to those who had been working in this field for many years to
see this trend change sign abruptly in 1992. The ∆T/T fluctuations seen by COBE
were actually larger than predicted by the standard version of the CDM model.
This must have been the first time a theory had been rejected because it did not
produce high enough temperature fluctuations!
Searches for CMB anisotropy would be (and have been), on their own, enough

subject matter for a whole book. In one chapter we must therefore limit our scope
quite considerably. Moreover, COBE marked the start, rather than the finish, of
this aspect of cosmology and it would have been pointless to produce a definitive
review of all the ongoing experiments and implications of the various upper limits
and half-detections for specific theories, when it is possible that the whole picture
will change within a year or two. Therefore, we shall mainly concentrate on trying
to explain the physics responsible for various forms of temperature anisotropy.
We shall not discuss any specific models in detail, except as illustrative examples,
and our treatment of the experimental side of this subject will be brief and non-
technical. Finally, we shall be extremely conservative when it comes to drawing
conclusions. As we shall explain, the situation with respect to CMB anisotropy as
a function of angular scale is still very confused and we feel the wisest course is to
wait until observations are firmly established before drawing definite conclusions.

17.2 The Angular Power Spectrum

Let us first describe how one provides a statistical characterisation of fluctua-
tions in the temperature of the CMB radiation from point to point on the celestial
sphere.
The usual procedure is to expand the distribution of T on the sky as a sum over

spherical harmonics

∆T(θ,φ)
T

=
∞∑
l=0

m=+l∑
m=−l

almYlm(θ,φ), (17.2.1)

where θ andφ are the usual spherical angles; ∆T/T is defined by Equation (4.8.1).
The l = 0 term is a monopole correction which essentially just alters the mean
temperature on a particular observer’s sky with respect to the global mean over
an ensemble of all possible such skies. We shall ignore this term from now on
because it is not measurable. The l = 1 term is a dipole term which, as we shall see
in Section 17.3, is attributable to our motion through space. Since this anisotropy
is presumably generated locally by matter fluctuations, one tends to remove the
l = 1 mode and treat it separately. The remaining modes, from the quadrupole
(l = 2) upwards, are usually attributed to intrinsic anisotropy produced by effects
either at trec or between trec and t0. For these effects the sum in Equation (17.2.1) is
generally taken over l � 2. Higher l modes correspond to fluctuations on smaller
angular scales ϑ according to the approximate relation

ϑ � 60◦/l. (17.2.2)
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The expansion of ∆T/T in spherical harmonics is entirely analogous to the plane-
wave Fourier expansion of the density perturbations δ; the Ylm are a complete
orthonormal set of functions on the surface of a sphere, just as the plane-wave
modes are a complete orthonormal set in a flat three-dimensional space. The alm
are generally complex, and satisfy the conditions

〈a∗l′m′alm〉 = Clδll′δmm′ , (17.2.3)

where δij is the Kronecker symbol and the average is taken over an ensemble of
realisations. The quantity Cl is the angular power spectrum,

Cl ≡ 〈|alm|2〉, (17.2.4)

which is analogous to the power spectrum P(k) defined by Equation (14.2.5). It is
also useful to define an autocovariance function for the temperature fluctuations,

C(ϑ) =
〈
∆T
T
(n̂1)

∆T
T
(n̂2)



, (17.2.5)

where

cosϑ = n̂1 · n̂2 (17.2.6)

and the n̂i are unit vectors pointing to arbitrary directions on the sky. The expec-
tation values in (17.2.3) and (17.2.5) are taken over an ensemble of all possible
skies. One can try to estimate Cl or C(ϑ) from an individual sky using an ergodic
hypothesis: an average over the probability ensemble is the same as an average
over all spatial positions within a given realisation. This only works on small angu-
lar scales when it is possible to average over many different pairs of directions
with the same ϑ, or many different modes with the same l. On larger scales, how-
ever, it is extremely difficult to estimate the true C(ϑ) because there are so few
independent directions at large ϑ or, equivalently, so few independent lmodes at
small l. Large-angle statistics are therefore dominated by the effect of cosmic vari-
ance: we inhabit one realisation and there is no reason why this should possess
exactly the ensemble average values of the relevant statistics.
As was the case with the spatial power spectrum and covariance functions,

there is a simple relationship between the angular power spectrum and covariance
function:

C(ϑ) = 1
4π

∞∑
l=2
(2l+ 1)ClPl(cosϑ), (17.2.7)

where Pl(x) is a Legendre polynomial. We have written the sum explicitly to omit
the monopole and dipole contributions from (17.2.1).
It is quite straightforward to calculate the cosmic variance corresponding to an

estimate obtained from observations of a single sky, Ĉ(ϑ), of the ‘true’ autoco-
variance function, C(ϑ):

Ĉ(ϑ) = 1
4π

∞∑
l=2

l∑
m=−l

|âlm|2Pl(cosϑ), (17.2.8)
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where the âlm are obtained from a single realisation on the sky. The statistical
procedure for estimating these quantities is by no means trivial, but we shall
not describe the various possible approaches here: we refer the reader to the
bibliography for more details. In fact the variance of the estimated âlm across an
ensemble of skies will be |alm|2 so that the Ĉ(θ) will have variance

〈|Ĉ(ϑ)− C(ϑ)|2〉 =
(

1
4π

)2 ∞∑
l=2
(2l+ 1)C2l P

2
l (cosϑ). (17.2.9)

We have again explicitly omitted the monopole and dipole terms from the sums
in (17.2.8) and (17.2.9).
In Sections 17.4–17.6 we shall discuss the various physical processes that pro-

duce anisotropy with a given form ofCl (wementioned these briefly in Section 4.8);
the dipole is discussed in Section 17.3. Generally the form of Clmust be computed
numerically, at least on small and intermediate scales, by solving the transport
equations for the matter–radiation fluid through decoupling in the manner dis-
cussed in Chapter 13. We shall make some remarks on how this is done later in this
chapter. As we shall see, the comparison of a theoretical Cl against an observed
Ĉl or Ĉ(ϑ) in principle provides a powerful test of theories of galaxy formation.
Before discussing the physics, however, it is worth making a few remarks about
observations of the CMB anisotropy.
The fluctuations one is looking for generally have an amplitude of order 10−5.

One is therefore looking for a signal of amplitude around 30 µK in a background
temperature of around 3 K. One’s observational apparatus, even with the aid of
sophisticated cooling equipment, will generally have a temperature much higher
than 3 K and one must therefore look for a tiny variation in temperature on the
sky against a much higher thermal noise background in the instrument. From the
ground, one also has the problem that the sky is a source of thermal emission at
microwave frequencies. Noise of these two kinds is usually dealt with by integrat-
ing for a very long time (thermal noise decreases as

√
t, where t is the integration

time) and using some kind of beam-switching design in which one measures not
∆T at individual places but temperature differences at a fixed angular separation
(double beam switching) or alternate differences between a central point and two
adjacent points (triple beam switching). Recovering the ∆T at any individual point
(i.e. to produce a map of the sky) from these types of observations is therefore
not trivial. Moreover, any radio telescope capable of observing the microwave sky
will have a finite beamwidth and will therefore not observe the temperature point
by point, but would instead produce a picture of the sky convolved with some
smoothing function, perhaps a Gaussian:

F(ϑ) = 1

2πϑ2f
exp

(
− ϑ

2

2ϑ2f

)
. (17.2.10)

It is generally more convenient to work in terms of l than in terms of ϑ so we
shall express the response of the instrument as Fl; the relationship between Fl
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and F(ϑ) is the same as between Cl and C(ϑ) given by Equation (17.2.7). In the
case of (17.2.10), for example, we get

Fl = exp[−(l+ 1
2)

2 1
2ϑ

2
f ]. (17.2.11)

The observed (smoothed) temperature autocovariance function can then be writ-
ten

C(ϑ;ϑf) = 1
4π

∞∑
l=2
(2l+ 1)FlClPl(cosϑ). (17.2.12)

One must also allow for the effect of beam switching upon the measured tem-
perature fluctuations. Here we shall just illustrate the effect on the mean square
temperature fluctuation. For a single beam experiment this is just

〈(
∆T
T

)2

= 1
4π

∑
(2l+ 1)ClFl = C(0;ϑf), (17.2.13)

while for a double-beam experiment, where each beam has a width ϑf and the
beam throw, i.e. the angular separation of the two beams, is α, we have

〈(
∆T
T

)2

=
〈
(T1 − T2)2
T 2



= 2[C(0;ϑf)− C(α;ϑf)]. (17.2.14)

The case of a triple-beam experiment is rather more complicated; here

〈(
∆T
T

)2

=
〈
[T1 − (T2 + T3)/2]2

T 2



= 3

2C(0;ϑf)− 2C(α;ϑf)+ 1
2C(2α;ϑf),

(17.2.15)

where T1 is the central beam. One can extend the relations (17.2.13)–(17.2.15) to
calculate the full-sky autocovariance function measured by the experiment, and
hence the effective Fl taking into account smoothing and switching.
The function Fl provides the best way of describing the response of any par-

ticular experiment. Of course, different experiments are designed to respond to
different angular scales or different ranges of l. For example, the COBE DMR exper-
iment we shall describe in Section 17.4 (the first experiment to detect significant
fluctuations other than the dipole) has a beam-switching configuration with a
beam width of a few degrees and a beam throw of around 60◦; this experiment
is sensitive to relatively small l. Single-dish ground-based experiments operate at
the other end of the spectrum and can be sensitive to l modes of order several
thousand.

17.3 The CMB Dipole

It has been known since the 1970s that the cosmic microwave background is not
exactly isotropic, but has a dipole anisotropy on the sky, i.e. a variation with angle
θ proportional to cosθ. This is usually interpreted as being due to the motion of
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our Galaxy with respect to a cosmologically comoving frame in which the CMB
is isotropic. The angle θ is the angle between the observation and the direction
of motion of the observer. The effect is not a simple Doppler effect. The actual
level of anisotropy is of order β = v/c � 10−3, so for the derivation of the result
we shall ignore relativistic corrections. The point is that the Doppler effect will
increase the energy of photons seen in the direction of motion relative to that of
a static observer in an isotropic background. However, the interval of frequencies
dν is also increased by the same factor of (1 + β cosθ). Since the temperature
is defined in terms of energy per unit frequency, the net Doppler effect on the
temperature is zero. There are, however, two other effects. The first is that the
moving observer actually sweeps up more photons. In a direction θ the observer
collects (c dt+v cosθ dt)/c dtmore photons than an observer at rest, which gives
rise to an increase in the temperature by a factor of (1 + β cosθ). The second
effect is aberration: the solid angle for a moving observer gets smaller by a factor
(1 + β cosθ)−2, so the flux goes up by the reciprocal of this factor. Hence the
spectral intensity seen by a moving observer is

I′(ν′) = (1+ β cosθ)3I(ν). (17.3.1)

Inserting all the factors in (9.5.1) gives the Planck spectrum with T(θ) = T0(1 +
β cosθ). Including all the relativistic effects, to leading order in β, gives

T(θ) = T0(1− β2)1/2(1+ β cosθ); (17.3.2)

cf. Equations (4.8.2) and (11.7.3). The reason why this is accepted to be due to our
motion is that the quadrupole moment (variation on 90◦ scale; l = 2) is much less:
if it were generated by intrinsic anisotropy, one should expect these two scales
to contribute roughly the same order of magnitude to ∆T/T . By making a map of
T(θ,φ) on the sky, one can determine the velocity vector that explains the dipole.
The measured velocity is 390 ± 30 km s−1. After subtracting the Earth’s motion
around the Sun, the Sun’s motion around the Galactic centre and the velocity of
our Galaxy with respect to the centroid of the Local Group, this dipole anisotropy
tells us the speed and direction of the Local Group through the cosmic reference
frame. The result is a velocity of about 600 km s−1 in the direction of Hydra-
Centaurus (l = 268◦, b = 27◦) (Rowan-Robinson et al . 1990).
In the gravitational instability picture this velocity can be explained as being due

to the net gravitational pull on the Local Group generated by the inhomogeneous
distribution of matter around it. In fact the net gravitational acceleration is just

g = G
∫
ρ(r)r
r 3

dV, (17.3.3)

where the integral should formally be taken to infinity. As we shall see in Sec-
tion 18.1, the linear theory of gravitational instability predicts that this gravita-
tional acceleration is just proportional to, and in the same direction as, the net
velocity. Moreover, the constant of proportionality depends on f � Ω0.6. If one
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can measure ρ from a sufficiently large sample of galaxies, then one can in prin-
ciple determine Ω. Of course, the ubiquitous bias factor intrudes again, so that
one can only determine f/b, and that only as long as b is constant.
The technique is simple. Suppose we have a sample of galaxies with some well-

defined selection criterion so that the selection function, the probability that a
galaxy at distance r from the observer is included in the catalogue, proportional to
the functionψ in Section 16.3, has some known formφ(r). Then the acceleration
vector g at the origin of the coordinates can be approximated by

g = 4
3πGD = GM∗

∑
i

1
φ(ri)

ri
r 3i
, (17.3.4)

where the ri are the galaxy positions,M∗ is a normalisation factor with the dimen-
sion of mass to take into account the masses of the galaxies at ri, and the fac-
tor 1/φ(ri) allows for the galaxies not included in the survey. The sum in Equa-
tion (17.3.4) is taken over all the galaxies in the sample. The dipole vector D can
be computed from the catalogue and, as long as it is aligned with the observed
CMB dipole anisotropy, one can estimate Ω0.6

0 . It must be emphasised that this
method measures only the inhomogeneous component of the gravitational field:
it will not detect a mass component that is uniform over the scale probed by
the sample. This technique has been very popular over the last few years, mainly
because the various IRAS galaxy catalogues are very suitable for this type of analy-
sis. There are, however, a number of difficulties which need to be resolved before
the method can be said to yield an accurate determination of Ω.
First, and probably most importantly, is the problem of convergence. Suppose

one has a catalogue that samples a small sphere around the Local Group, but
that this sphere is itself moving in roughly the same direction. For this to hap-
pen, the Universe must be significantly inhomogeneous on scales larger than the
catalogue can probe. In this circumstance, the actual velocity explained by the
dipole of the catalogue is not the whole CMB dipole velocity but only a part of it.
It follows then that one would overestimate the Ω0.6 factor by attributing all of
the observed velocity to the observed local dipole D when, in reality, this dipole
is only responsible for part of this velocity. One must be sure, therefore, that the
sample is deep enough to sample all contributions to the Local Group motion if
one is to determine Ω with any accuracy. Analyses of the dipole properties of
the IRAS catalogues seem to indicate a rather high value of f/b, consistent with
Ω = 1. On the other hand, catalogues of rich clusters, which have a selection func-
tion φ(r) that falls less steeply on large scales than that of IRAS galaxies, seem
to indicate Ω � 0.3 (Plionis et al . 1993).
Another problem is that, because of the weighting in Equation (17.3.4), one

must ensure that the selection function is known very accurately, especially at
large r . This essentially means knowing the luminosity function extremely well,
particularly for the brightest objects (the ones that will be seen at great distances).
There is also the problem that galaxy properties may be evolving with time so the
luminosity function for distant galaxiesmay be different from that of nearby ones.
There is also the problem of bias. We have assumed a linear bias throughout the
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above discussion. The ramifications of nonlinear and/or non-local biases have yet
to be worked out in any detail.
Finally, we should mention the effect of redshift-space distortions, cf. Sec-

tion 18.5. On the scales needed to probe large-scale structure, it is not practi-
cable to obtain distances for all the objects, so one uses redshifts to estimate
distances. One might expect this to be a good approximation at large r , but work-
ing in redshift space rather than real space introduces alarming distortions into
the analysis. One can illustrate some of the problems with the following toy exam-
ple. Suppose an observer sits in a rocket and flies through a uniform distribution
of galaxies. If he looks at the distribution in redshift space, even if the galaxies
have no peculiar motions, he will actually see a dipole anisotropy caused by his
motion. He may, if he is unwise, thus determine Ω from his own velocity and this
observed dipole: the answer would, of course, be entirely spurious and would have
nothing whatsoever to do with the mean density of the Universe.
The combination of redshift-space effects, bias and lack of convergence is diffi-

cult to unravel. We therefore suggest that determinations of Ω by this method be
treated with caution. For the latest developments in dipole analysis, see Rowan-
Robinson et al . (2000).

17.4 Large Angular Scales

17.4.1 The Sachs–Wolfe effect

Having dealt with the dipole, we should now look at sources of intrinsic CMB
temperature anisotropy. On large scales the dominant contribution to ∆T/T is
expected to be the Sachs–Wolfe effect (Sachs and Wolfe 1967). This is a relativis-
tic effect due to the fact that photons travelling to an observer from the last
scattering surface encounter metric perturbations which cause them to change
frequency. One can understand this effect in a Newtonian context by noting that
metric perturbations correspond to perturbations in the gravitational potential,
δϕ, in Newtonian theory and these, in turn, are generated by density fluctuations,
δρ. Photons climbing out of such potential wells suffer a gravitational redshift but
also a time dilation effect so that one effectively sees them at a different time, and
thus at a different value of a, to unperturbed photons. The first effect gives

∆T
T

= δϕ
c2
, (17.4.1)

while the second contributes

∆T
T

= −δa
a

= −2
3
δt
t

= −2
3
δϕ
c2

; (17.4.2)

the net effect is therefore

∆T
T

= 1
3
δϕ
c2

� 1
3
δρ
ρ

(
λ
ct

)2
, (17.4.3)
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where λ is the scale of the perturbation. This argument is not rigorous, as the
split into potential and time-delay components is not gauge invariant but does
explain why (17.4.1) is not the whole effect.
So far we have considered only adiabatic fluctuations. Since the Sachs–Wolfe

effect is generated by fluctuations in themetric, then onemight expect that isocur-
vature fluctuations (perturbations in the entropy which leave the energy density
unchanged and therefore, onemight expect, produce negligible fluctuations in the
metric) should produce a very small Sachs–Wolfe anisotropy. This is not the case,
for two reasons. Firstly, initially isocurvature fluctuations do generate significant
fluctuations in the matter component and hence in the gravitational potential,
when they enter the horizon; this is due to the influence of pressure gradients. In
addition, isocurvature fluctuations generate significant fluctuations in the radia-
tion density after zeq, because the initial entropy perturbation is then transferred
into the perturbation of the radiation. The total anisotropy seen is therefore the
sum of the Sachs–Wolfe contribution and the intrinsic anisotropy carried by the
radiation. The upshot of all this is that the net anisotropy is six times larger for
isocurvature fluctuations than for adiabatic ones. This is sufficient on its own
to rule out most isocurvature models since the level of anisotropy detected is
roughly that expected for adiabatic perturbations.
According to Equation (17.4.3), the temperature anisotropy is produced by grav-

itational potential fluctuations sitting on the last scattering surface. In fact this is
not quite correct, and there are actually two other contributions arising from the
Sachs–Wolfe effect. The first of these is a term

∆T
T

� 2
∫
δ̇ϕ
c2

dt, (17.4.4)

where the integral is taken along the path of a photon from the last scattering
surface to the observer. This effect, usually called the Rees–Sciama effect, is due
to the change in depth of a potential well as a photon crosses it. If the well does
not deepen, a photon does not suffer a net shift in energy from falling in and then
climbing up. If the potential changes while the photon moves through it, however,
there will be a net change in the frequency. In a flat universe, δϕ is actually con-
stant in linear theory (see Section 18.1 for a proof) so one needs to have nonlinear
evolution in order to produce a nonlinear Sachs–Wolfe effect. Since the potential
fluctuations are of order δϕ � δ(λ/ct)2 one requires nonlinear evolution of δ
on very large scales to obtain a reasonably large contribution. To calculate the
effect in detail for a background of perturbations is quite difficult because of the
inherent nonlinearity involved. On the other hand, it is possible to calculate the
effect using simplified models of structure. For example, a large void region can
be modelled as an isolated homogeneous underdensity (the inverse of the spher-
ical top hat discussed in Section 14.1) which can be evolved analytically into the
nonlinear regime. It turns out that, for a spherical void of the same diameter as
the large void seen in Bootes, one expects to see a cold spot corresponding to
∆T/T � 10−7 on an angular scale around 15◦. Large clusters or superclusters
can be modelled using top-hat models, the Zel’dovich approximation or perturba-
tive techniques. The Shapley concentration of clusters, for example, is expected
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to produce a hotspot with ∆T/T � 10−5 on a scale around 20◦. In general these
effects are smaller than the intrinsic CMB anisotropies we have described, but
may be detectable in large, sensitive sky maps: the position on the sky of these
features should correspond to known features of the galaxy distribution.
The second additional contribution comes from tensor metric perturbations,

i.e. gravitational waves. These do not correspond to density fluctuations and have
no Newtonian analogue but they do produce redshifting as a result of the pertur-
bations in themetric. As we shall see at the end of this section, gravitational waves
capable of generating large-scale anisotropy of this kind are predicted in many
inflationary models, so this is potentially an important effect.
For the moment, we shall assume that we are dealing with temperature fluctua-

tions produced by potential fluctuations of the form (17.4.3). What is the form of
Cl predicted for fluctuations generated by this effect? This can be calculated quite
straightforwardly by writing δϕ as a Fourier expansion and using the fact that the
power spectrum of δϕ is proportional to k−4P(k), where P(k) is the power spec-
trum of the density fluctuations. Expanding the net ∆T/T in spherical harmonics
and averaging over all possible observer positions yields, after some work,

Cl = 〈|alm|2〉 = 1
2π

(
H0

c

)4 ∫∞

0
P(k)j2l (kx)

dk
k2
, (17.4.5)

where jl is a spherical Bessel function and x = 2c/H0. One can also show quite
straightforwardly that, for an initial power spectrum of the form P(k) ∝ k, the
quantity l(l+1)Cl is independent of the mode order l for the Sachs–Wolfe pertur-
bations. In any case the shape of Cl for small l is determined purely by the shape
of P(k), the shape of the primordial fluctuation spectrum before it is modified by
the transfer function. The reason for this is easy to see: the scale of the horizon
at zrec is of order

ϑH(zrec) �
(
Ω
zrec

)1/2
rad, (17.4.6)

so that ϑH � 2◦ for zrec � 1000, which is the usual situation. Fluctuations on
angular scales larger than this will retain their primordial character since they
will not have been modified by any causal processes inside the horizon before
zrec. One must therefore be seeing the primordial (unprocessed) spectrum. This
is particularly important because observations of Cl at small l can then be used
to normalise P(k) in a manner independent of the shape of the power spectrum,
and therefore independent of the nature of the dark matter.
One simple way to do this is to use the quadrupole perturbation modes which

have l = 2. There are five spherical harmonics with l = 2, so the quadrupole has
five components a2m (m = −2, −1, 0, 1, 2) that can be determined from a map of
the sky even if it is noisy. From (17.4.5), we can show that, if P(k)∝ k, then

〈|a2m|2〉 = C2 � π
3

(
H0R
c

)4(δM
M

)2
R
. (17.4.7)

This connects the observed temperature pattern on the sky with the mass fluctu-
ations δM/M = σM observed at the present epoch on a scale R.
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17.4.2 The COBE DMR experiment

Such is the importance of the COBE discovery that it is worth describing the exper-
iment in a little detail. The COBE satellite actually carried several experiments on
it when it was launched in 1989. One of these (FIRAS) measured the spectrum dis-
played in Figure 9.1. The anisotropy experiment, called the DMR, yielded a positive
detection of anisotropy after one year of observations. The advantage of going into
space was to cut down on atmospheric thermal emission and also to allow cov-
erage of as much of the sky as possible (ground-based observations are severely
limited in this respect). The orbit and inclination of the satellite is controlled so as
to avoid contamination by reflected radiation from the Earth and Moon. Needless
to say, the instrument never points at the Sun. The DMR detector consists of two
horns at an angle of 60◦; a radiometer measures the difference in temperature
between these two horns. The radiometer has two channels (called A and B) at
each of three frequencies: 31.5, 53 and 90 GHz, respectively. These frequencies
were chosen carefully: a true CMB signal should be thermal and therefore have
the same temperature at each frequency; various sources of galactic emission,
such as dust and synchrotron radiation, have an effective antenna temperature
which is frequency dependent. Combining the three frequencies therefore allows
one to subtract a reasonable model of the contribution to the observed signal
which is due to galactic sources. The purpose of the two channels is to allow a
subtraction of the thermal noise in the DMR receiver. Assuming the sky signal and
DMR instrument noise are statistically independent, the net temperature variance
observed is

σ 2
obs = σ 2

sky + σ 2
DMR. (17.4.8)

Adding together the input from the two channels and dividing by two gives an
estimate of σ 2

obs; subtracting them and dividing by two yields an estimate of
σ 2
DMR, assuming that the two channels are independent. Taking these two together,

one can therefore obtain an estimate of the RMS sky fluctuation. The first COBE
announcement in 1992 gave σsky = 30± 5 µK, after the data had been smoothed
on a scale of 10◦.
In principle the set of 60◦ temperature differences from COBE can be solved as a

large set of simultaneous equations to produce a map of the sky signal. The COBE
team actually produced such a map using the first year of data from the DMR
experiment. It is important to stress, however, that, because the sky variance is
of the same order as the DMR variance, it is not correct to claim that any features
seen in the map necessarily correspond to structures on the sky. Only when the
signal-to-noise ratio is much larger than unity can one pick out true sky features
with any confidence. The first-year results should therefore be treated only as a
statistical detection.
The value of 〈a2lm〉1/2 obtained by COBE is of order 5 × 10−6. This can also be

expressed in terms of the quantity Qrms, which is defined by

Q2
rms =

T 20
4π

∑
m

〈|a2m|2〉 = 5T 20
4π

〈|a2m|2〉 � (17 µK)2. (17.4.9)
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Figure 17.1 Black and white representation of the COBE DMR four-year data map. The
typical angular scale of fluctuations is around 10◦ and the typical amplitude is around
30µ K. Picture courtesy of George Smoot and NASA.

Translated into a value of σ8(mass) using (17.4.7) with n = 1 and a standard
CDM transfer function, this suggests a value of b � 1, which does not seem to
allow the option of a linear bias for removing discrepancies between clustering
and peculiar motions, such as those we shall discuss in Chapter 18. We should say
that normalising everything to the quadrupole in this way is not a very good way
of using the COBE data, which actually constitute a map of nearly the whole sky
with a resolution of about 10◦. The RMS temperature anisotropy obtained from
the whole map is of order 1.1 × 10−5. (Both this value and the quadrupole value
are changed as more data from this experiment were analysed.) The quadrupole
mode is actually not as well determined as theCl for higher l, so a better procedure
is to fit to all the available data with a convolution of the expected Cl for some
amplitude with the experimental beam response and then determine the best
fitting amplitude for the data. The results of more sophisticated data analysis
like this are, however, in rough agreement with the simpler method mentioned
above. Notice also that one can in principle determine the primordial spectral
index n from the data by calculating C(ϑ) and comparing this with the expected
form using Equation (17.4.5) for a given P(k) ∝ kn. The results obtained from
this type of analysis are rather noisy, and do differ significantly depending on the
type of analysis technique used, but they do seem consistent with n = 1.
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Four years’ worth of data from the DMR experiment have now been published;
the experiment was turned off in 1994. An independent detection of fluctuations
on a slightly smaller scale than COBE was later announced by a team working at
Tenerife using a ground-based beam-switching experiment (Hancock et al . 1993).
The level and form of fluctuations detected in this experiment are consistent with
those found by COBE.

17.4.3 Interpretation of the COBE results

At this stage, let us return to a point we raised above: the possible contribution
of tensor perturbation modes to the large-scale CMB anisotropy. Gravitational
waves do involve metric fluctuations and therefore do generate a Sachs–Wolfe
effect on scales larger than the horizon. Once inside the horizon, however, they
redshift away (just like relativistic particles) and play no role at all in structure
formation. Gravitational waves produce an effect similar to scalar perturbations
on large angular scales but have negligible influence upon ∆T/T on scales inside
the horizon at zrec. Clearly, normalising the power spectrum P(k) to the observed
Cl using (17.4.5) is incorrect if the tensor signal is significant.
One can define a power spectrum of gravitational wave perturbations in an anal-

ogous fashion to that of the density perturbations. It turns out that inflationary
models also generically predict a tensor spectrum of power-law form, but with a
spectral index

nT = 1− 2ε∗, (17.4.10)

instead of equation (13.6.10). Since ε∗ is a small parameter the tensor spectrum
will be close to scale invariant. It is also possible to calculate the ratio,R, between
the tensor and scalar contributions to Cl:

R = C
T
l

CSl
� 12ε∗. (17.4.11)

To get a significant value of the gravitational wave contribution to Cl one there-
fore generally requires a significant value of ε∗ and therefore both scalar and
tensor spectra will usually be expected to be tilted away from n = 1. If R = 1,
then one can reconcile the COBE detection with a CDM model having a signifi-
cantly high value of b. Because one cannot use Sachs–Wolfe anisotropies alone to
determine the value ofR, there clearly remains some element of ambiguity in the
normalisation of P(k).
The Equations (17.4.10) and (17.4.11) are true for inflationary models with a

single scalar field. More contrived models with several scalar fields can allow the
two spectral indices and the ratio to be given essentially independently of each
other. The shape of the COBE autocovariance function suggests that n cannot be
much less than unity, so the prospects for having a single-field inflationary model
producing a large tensor contribution seem small. On the other hand, we have no a
priori information about the value ofR so it would be nice to be able to constrain
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it using observations. It turns out that to perform such a test requires, at the very
least, observations on a different (i.e. smaller) angular scale. From Figure 17.1
one can see that the scalar contribution increases around degree scales, while the
tensor contribution dies away completely. We shall discuss the reasons for this
shortly. In principle, one can therefore estimate R by comparing observations of
Cl at different values of l although, as we shall see, the result is rather model
dependent.
We should also mention that, if the CMB fluctuations are generated by primor-

dial density perturbations which are Gaussian (Section 13.8), then the fluctuations
∆T/T should be Gaussian also. The nonlinear Sachs–Wolfe effect generally pro-
duces a non-Gaussian temperature pattern, as do various extrinsic anisotropy
sources we shall discuss in Section 17.6. To be precise, the prediction is that indi-
vidual alm should have Gaussian distributions so that the actual sky pattern will
only be Gaussian if one adds a significant number of modes for the central limit
theorem to come into play. In principle it is possible to use statistical properties
of sky maps to test the hypothesis that the fluctuations were Gaussian, though
this task will have to wait for better data than are available at present. Notice that
instrumental noise is almost always Gaussian, so if there is a lot of noise super-
imposed on the sky signal one can have problems detecting any non-Gaussian
features which may be generated by extrinsic effects, or non-Gaussian perturba-
tions such as cosmic strings. At the moment, all we can say is that the COBE and
Tenerife results are at least consistent with Gaussian primordial fluctuations.

17.5 Intermediate Scales

As we have already explained, the large-scale features of the microwave sky are
expected to be primordial in origin. Smaller scales are closer to the size of the
Hubble horizon at zrec so the density fluctuations present there may have been
modified by various damping and dissipation processes. Moreover, there are phys-
icalmechanisms other than the Sachs–Wolfe effect which are capable of generating
anisotropy in the CMB on these smaller scales. We shall concentrate upon intrinsic
sources of anisotropy in this section, i.e. those connected with processes occur-
ring around trec; we mention some extrinsic (line-of-sight) sources of anisotropy
in Section 17.6.
Let us begin with some naive estimates. For a start, if the density perturbations

are adiabatic, then one should expect fluctuations in the photon temperature of
the same order. Using ρr ∝ T 4 and the adiabatic condition, 4δm = 3δr, we find
that

∆T
T

� 1
3
δρ
ρ
, (17.5.1)

which is also stated implicitly in Section 12.2. Another mechanism, first discussed
by Zel’dovich and Sunyaev, is simply a Doppler effect. Density perturbations at
trec will, by the continuity equation, induce streaming motions in the plasma. This
generates a temperature anisotropy because some electrons are moving towards
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the observer when they last scatter the radiation and some are moving away. It
turns out that the magnitude of this effect for perturbations on a scale λ at time
t is

∆T
T

� v
c
� δρ
ρ

(
λ
ct

)
, (17.5.2)

where ct is of order the horizon scale at t.
The actual behaviour of the background radiation spectrum is, however, much

more complicated than these simple arguments might suggest. The detailed com-
putation of fluctuations originating on these scales is consequently much less
straightforward than was the case for the Sachs–Wolfe effect. In general one there-
fore resorts to a full numerical solution of the Boltzmann equation for the photons
through recombination, taking into account the effect of Thomson scattering, as
described briefly in Section 11.10. The usual approach is to expand the distribu-
tion function of the radiation in spherical harmonics thereby generating a coupled
set of equations for different l-modes of the distribution function; in Section 12.10
we used the brightness function, δ(r), to represent the perturbation to the radia-
tion and wrote down a set of equations (11.9.7) for the l-modes, σl, defined by

δ(r)k (µ, t) =
∑
l
(2l+ 1)Pl(µ)σl(k, t); (17.5.3)

µ = cosϑ is the cosine of the angle between the photon momentum and the wave
vector k. The solution of (11.9.7) is a fairly demanding numerical task. Given a
set of σl, however, it is straightforward to show that the autocovariance function
C(ϑ) of the sky at the present time is just

C(ϑ) = 1
2π2

∫∞

0

∑
l
(2l+ 1)(14σl(k, t0))

2Pl(cosϑ)k2 dk, (17.5.4)

where the integral takes the distribution from Fourier space back to real space and
the factor of 4 is due to the fact that δr = 4∆T/T . Fortunately, it is now possible
to perform computations of both the transfer functions we described in Chap-
ter 15 and the predicted temperature fluctuations rapidly and accurately using
an approach that bypasses the complex hierarchy we described above. The code
that does this, CMBFAST (Seljak and Zaldarriaga 1996), is available freely on the
web so that anyone interested in computing the predicted pattern of fluctuations
for their favourite model may download it.
As mentioned above, one can also allow for the effect of different beam profiles

and experimental configurations. For example, a double-beam experiment of the
form (17.2.14) would have

(
∆T
T0

)2
α;σ

= 1
64π2

∫∞

0
k2
∫ 1
−1

|δ(r)k (µ, t0)|2

× {1+ 1
3J0[2αkr0(1− µ2)1/2]− 4

3J0[αkr0(1− µ2)1/2]}
× exp[−k2σ 2r 20 (1− µ2)1/2]dkdµ, (17.5.5)
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Figure 17.2 A compilation of experimental measurements of Cl along with a theoretical
curve for standard CDM. Picture courtesy of Ned Wright.

for a Gaussian beam of width σ and a beam throw of α. In the previous equation
J0 is a Bessel function and r0 � 2c/ΩH0.
An example of a numerical computation of the Cl for a CDM model over the

range of interest here is given in Figure 17.2 (solid line) along with a morass of
points that represents various experimental results. Note the flat behaviour at
small l owing to the Sachs–Wolfe effect. After this one notices a steep increase in
the angular power spectrum for l ∼ 100–200. This angular scale corresponds to
the horizon scale at zrec. The shape of the spectrum beyond this peak is compli-
cated and depends on the relative contribution of baryons and dark matter. For
example, the small ‘bumps’ at large l change position if Ωb is changed.
Although these theoretical results are computed numerically, it is important to

understand the physical origin of the features of the resulting Cl at least quali-
tatively. The large peak around the horizon scale is usually interpreted as being
due to velocity perturbations on the last scattering surface, as suggested by Equa-
tion (17.5.2), and is consequently sometimes called the Doppler peak. The fea-
tures at higher l are connected with a phenomenon called Sakharov oscillations.
Basically what happens is that perturbations inside the horizon on these angu-
lar scales oscillate as acoustic standing waves with a particular phase relation
between density and velocity perturbations. These oscillations can be seen in Fig-
ures 11.1 and 11.2 and in the transfer function in Figure 15.1. After recombination,
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when pressure forces become negligible, these waves are left with phases which
depend on their wavelength. Both the photon temperature fluctuations (17.5.1)
and the velocity perturbations (17.5.2) are therefore functions of wavelength (both
contribute to ∆T/T in this regime) and this manifests itself as an almost periodic
behaviour of Cl. The use of the term ‘Doppler peak’ to describe only the first
maximum of these oscillations is misleading because it is actually just the first
(and largest-amplitude) Sakharov oscillation. Although velocities are undoubtedly
important in the generation of this feature, it is wrong to suggest that the physi-
cal origin of the first peak in the angular power spectrum is qualitatively different
from the others.
The power spectrum of the matter fluctuations is also expected to display oscil-

lations relating to this phase effect but with a much lower contrast. The reason
for this is that most of the matter in standard models is neither baryonic nor colli-
sional. Consequently it neither interacts by scattering with radiation nor produces
restoring forces to support induced oscillations. Essentially the CMB anisotropy
is influenced by the baryonic component only so the oscillations are dominant,
while the power spectrum of the dark matter is smooth with only small baryonic
oscillations superimposed upon it.
The physical origin of these oscillations is interesting enough, but their impor-

tance in present and future cosmological investigations is paramount. The reason
for this is that the position and relative amplitudes of the Doppler peak and its
‘harmonics’ are a sensitive diagnostic not just of the precise mix of dark matter
and baryons, but also the values of the principal cosmological parameters. For
instance, the position of the first peak is a direct route to the density parame-
ter Ω0 or, rather, the global curvature k. The physical length scale at which this
peak occurs corresponds to the size of the sound horizon (cstrec, where cs is the
sound speed) at the surface of last scattering roughly defined by trec. This does not
vary much with cosmological parameters. However, this length scale subtends an
angle that depends on the geometry of the Universe. Consequently the spherical
harmonic l that corresponds to the Doppler peak changes if the background cur-
vature changes. In a flat universe the peak occurs around l � 200. If the universe
has positive curvature, geodesics converge towards the observer so the angle sub-
tended by a ‘rod’ of fixed size is larger than in a flat universe. The peak therefore
moves to smaller l in this case. If spatial sections are negatively curved, then the
peak moves to higher l; see Figure 2.3 to see why the angle looks smaller in an
open universe. This shows how important the first peak is, but the detailed shape
of the power spectrum has a strong dependence on the other parameters too. An
accurate measurement of these features promises to nail many of the uncertain-
ties facing cosmology in one fell swoop. For further discussion of open universes
see Kamionkowski and Spergel (1994).
There are complications, of course. One is the relatively slow rate of recombi-

nation. One effect of this is that the optical depth to the last scattering surface
can be quite large, and small-scale features can be smoothed out. For example,
as we discussed in Section 9.4 in the context of the standard theory of recombi-
nation, the last scattering surface can have an effective ‘width’ up to ∆z � 400,
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which corresponds to a proper distance now of ∆L � 40h−1 Mpc, and to an angu-
lar scale � 20 arcmin. The finite thickness of the last scattering surface can mask
anisotropies on scales less than ∆L in the same way that a thick piece of glass pre-
vents one from seeing small-scale features through it. This causes a damping of
the contribution at high l and thus a considerable reduction in the ∆T/T relative
to the photon temperature fluctuations (17.5.1).
High angular frequency fluctuations are also quite sensitive to the possibil-

ity that the Universe might have been reionised at some epoch. As we shall
see in Chapter 20, we know that the intergalactic medium is now almost com-
pletely ionised. If this happened early enough, it could smear out the fluctu-
ations on scales less than a few degrees, rather than the few arcminutes for
standard recombination, the case shown in Figure 17.2. Some non-standard cos-
mologies involve such a late recombination so that ∆z might be much larger.
The minimum allowable redshift is, however, z � 30 because an optical depth
τ � 1 requires enough electrons (and therefore baryons) to do the scatter-
ing; a value z < 30 would be incompatible with Ωb < 0.1; we discussed
this in Chapter 9. In any case, if some physical process caused the Universe
to be reheated after trec, then it might smooth out anisotropy on scales less
than the horizon scale at the time when the reionisation occurred. Recall from
Equation (17.4.6) that the angular scale corresponding to the particle horizon
at z is of order (Ω/z)1/2, so late reionisation at z � 30 could smooth out
structure on scales of 10◦ or less, but not scales larger than this. We shall
see in Section 17.6 that, if this indeed occurred, one might expect to see
a significant anisotropy on a smaller angular scale, generated by secondary
effects.
The message one should take from these comments is that the fluctuations

on these scales are much more model dependent than those on larger scales. In
principle, however, they enable one to probe quite detailed aspects of the physics
going on at trec and are quite sensitive to parameters which are otherwise hard to
estimate. Moreover, tensor modes do not produce any Doppler motions and their
contribution to Cl should therefore be small for high l. Although these oscillatory
features are potentially a very sensitive diagnostic of the perturbations generating
the CMB anisotropy, it is difficult to resolve them.
The problem with these experiments, which are all either balloon borne or

ground based, is twofold. Firstly, they usually probe a relatively small part of the
sky and the signal they seemay not be representative of the whole sky, i.e. they are
dominated by ‘sample variance’. The second problem is that, until recently, they
generally did not have the ability to remove point sources (because of the smaller
beam) or non-thermal emission (because of the smaller number of frequency chan-
nels) as effectively as COBE. Observational programmes aimed at improving the
situation have been pursued with great vigour over the last few years, as indicated
by the forest of error bars in Figure 17.2.
Over the last few years the situation has changed dramatically with two long-

duration balloon flights bearing sensitive bolometers finally giving convincing
measurements of the Doppler peak and its first one or two overtones (Hanany



Smaller Scales: Extrinsic Effects 385

Figure 17.3 The angular power spectrum of the CMB estimated by MAXIMA-1 and
Boomerang. Picture courtesy of Andrew Jaffe.

et al . 2000; Jaffe et al . 2001); see Figure 17.3. The crucial point about this result
is the position of the first peak. This tightly constrains the curvature to be very
small. Taken together with the supernova results and the relatively low apparent
matter density discussed in Chapter 4, this strongly suggests the existence of a
cosmological constant in the Einstein field equations.
These measurements still come from relatively small patches of the sky but

show how strong the constraints on cosmological models are likely to become in
the near future when all-sky satellites are launched. As we write, in 2002, a US-led
mission called MAP (Microwave Anisotropy Probe) is already in space collecting
data from which high-resolution whole-sky maps will be constructed. In 2007 the
European Space Agency’s Planck Surveyor will do a similar job at even higher
resolution.
As a final remark, we should stress that intrinsic CMB temperature anisotropy is

expected to be Gaussian on these scales, since it is generated by linear processes
from density perturbations which are themselves Gaussian. As with the Sachs–
Wolfe effect, one can in principle use the properties of ∆T/T to test the Gaussian
hypothesis on these scales also. For example, in the cosmic-string scenario the
dominant contribution to the CMB anisotropy is generated by cosmic strings lying
between the observer and the last scattering surface which distort the photon
trajectories. The detailed statistical properties of the pattern of temperaturemaps
on intermediate and large scales in this scenario will be very different from those
in Gaussian scenarios.

17.6 Smaller Scales: Extrinsic Effects

As explained in the introduction to this chapter, one of the main motivations
for studying the temperature anisotropy of the cosmic microwave background is
that one can, in principle, look directly at the effects of primordial density fluctu-
ations and therefore probe the initial conditions from which structure is usually
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Figure 17.4 A simulation of the CMB sky as it might be seen by MAP or Planck.

supposed to have grown. In the previous two sections we have elucidated the
physical mechanisms responsible for generating intrinsic anisotropy and shown
that these do indeed involve the primordial density perturbations. The problem
is that the length scales probed by these anisotropies are much larger than those
of direct relevance to galaxy and cluster formation. In fact, there is a simple rule
relating a given (comoving) length scale to the angle that scale subtends on the
last scattering surface:

1h−1 Mpc � 1
2Ω arcmin. (17.6.1)

As we explained in Section 17.5, temperature anisotropies due to fluctuations on
length scales up to 40h−1 Mpc will probably be smoothed out by the finite thick-
ness of the last scattering surface. One cannot therefore probe scales of direct
relevance to cluster and galaxy formation using measurements of intrinsic CMB
anisotropy. COBE and related experiments can only constrain theories of structure
formation if there is a continuous spectrum of density fluctuations with a well-
defined shape so that a measurement of the amplitude on the scale of a thousand
Mpc or so, corresponding to COBE, can be extrapolated down to smaller scales.
Because these experiments do not in themselves supply a test of the shape of the
power spectrum on smaller scales, theories must be constrained by combining
CMB anisotropy measurements with galaxy-clustering data or peculiar velocity
data; the latter will be discussed in the next chapter.
There are various ways, however, in which small-scale anisotropy measure-

ments can yield important information on short-wavelength fluctuations due to
extrinsic effects, rather than the intrinsic effects we have discussed so far. We shall
discuss some possible mechanisms of this type in this section. Because these are
highly model dependent and, in some cases, involve complicated physical pro-
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cesses, we shall restrict ourselves to a qualitative discussion without many tech-
nicalities. The interested reader is referred to the bibliography for further details.
One important consideration on scales of arcminutes and less is the contribu-

tion of various kinds of extragalactic sources to the CMB anisotropy. Point sources
generally have a non-thermal spectrum so they can, in principle, be accounted for
using multi-frequency observations, but this is by no means straightforward in
practice. The brightest point sources can be removed quite easily as they may be
resolved by the experimental beam. An integrated background due to large num-
bers of relatively faint sources is, however, very difficult to deal with. Many of
the intermediate scale measurements mentioned in Section 17.5 also suffer from
the difficulty of point-source subtraction. Although CMB measurements may in
principle place constraints on the evolution of various kinds of radio source, in
practice these are usually treated as a nuisance which is to be removed. Never-
theless, it is useful to calculate the approximate contribution to ∆T/T from point
sources distributed in different ways. Firstly, suppose the objects were actually
present before zrec, which seems rather unlikely. The radiation from them would
have to be thermalised by some agent, such as grains of dust, otherwise it would
lead to a spectral distortion of order q, the fraction of the CMB energy density
which they generate. If the sources are randomly distributed in space, then the
effective anisotropy is just due to Poisson statistics for ϑ > ϑH(zrec) = ϑ∗ given
by Equation (17.4.6): (

∆T
T

)
ϑ
� q
N1/2
ϑ

∝ q
ϑ
, (17.6.2)

whereNϑ is the mean number of sources in a beam of width ϑ. On angles less than
ϑ∗ the radiation would be smoothed out. For example, if we have a population of
sources with (comoving) mean spacing ls at a redshift zs, it is quite easy to show
that (

∆T
T

)
ϑ
� q

2

(
ls
ct0

)3/2
(1+ zs)1/4 ϑ

ϑ2∗ + ϑ2 . (17.6.3)

This corresponds to two-dimensional white noise filtered on a scale ϑ∗.
Now consider the case of sources at 1  z < zrec. In this case there is no

filtering and there will be a spectral distortion because this radiation cannot be
thermalised. The resulting ∆T/T is just like (17.6.3) with ϑ∗ = 0. As we remarked
above, limits on the departure of the spectrum from a black-body form can there-
fore constrain the contribution from such sources.
The expression (17.6.3) must be modified considerably if one is dealing with

local sources, by which we mean those with zs � 1 or thereabouts. Local
sources are usually referred to as ‘contamination’, which gives some idea of how
astronomers regard them. The contribution from such objects is dominated by the
brightest ones found in a solid angle ϑ2 and is therefore closely connected with
the logN–log S relationship (the radio astronomers equivalent of the number–
magnitude relation). One generally has

Nϑ[> S(ν)]∝ S(ν)−β, (17.6.4)
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with β � 2, where Nϑ[> S(ν)] is the number of sources per unit solid angle with
a measured flux at ν greater than S(ν); see Chapter 19 for some more details. If
their spectrum is proportional to να, then

(
∆T
T

)
ϑ
∝ ϑ2/β−2να−2. (17.6.5)

The amplitude due to these sources would depend strongly on wavelength. The
wavelength dependence can therefore, in principle, be used to identify the contri-
bution from them, but one needs to know the luminosity function of the sources
well to be able to subtract them, especially at higher frequencies. Another problem
is that the telescopes used for CMB studies often have considerable ‘sidelobes’,
which may pick up bright objects quite a long way away from the main beam of
the telescope; these are also difficult to subtract.
A cosmological background of dust may also affect the microwave background,

particularly if it is heated by some energetic source at early times. We shall discuss
the effect of this type of process upon the spectrum of the CMB radiation in Chap-
ter 19; here it suffices to note that dust generally emits infrared radiation and this
may leak into the wavelength range covered by CMB experiments. Dust is gener-
ally a signature of structure formation (it is mainly produced in regions forming
massive stars). Inhomogeneities in the dust density can lead to a temperature
anisotropy of the CMB. If the dust is clustered like galaxies and the distribution
evolves as in a CDM model, then it can be shown that one expects anisotropy up
to ∆T/T � 10−5 at 400 µm, rising to 10−4 at the peak of the CMB spectrum. Given
the lack of observed spectral distortions, however, it seems unlikely that dust will
generate a significant CMB anisotropy.
Another way in which secondary anisotropy can be generated is connected with

possible reionisation of the intergalactic gas after zrec. We have already explained
in Section 17.5 how this can smooth out intrinsic anisotropy. Generally, however,
reionisation will lead to significant secondary anisotropy on a smaller angular
scale than we considered in that section.
Reionisation or reheating may have been generated by many different mech-

anisms. Theories involving a dark-matter particle which undergoes a radiative
decay can lead to wholesale reionisation. Early star formation, active galactic
nuclei or quasars could also, in principle, have caused reionisation of the inter-
galactic medium. Cosmological explosions may heat up the intergalactic medium
in a very inhomogeneous way leading to considerable anisotropy. As we shall
explain in Chapter 21, we know that something reionised the Universe some time
before z � 4 so these apparently exotic scenarios are not completely implausible.
Whatever caused the gas to become ionised, there is expected to be an accom-

panying generation of anisotropy. Suppose the plasma is heated enough to ionise
it, but not enough for the electrons to become highly relativistic. If the plasma is
inhomogeneous, then it will generally have a velocity field associated with it and a
photon travelling through the ionised medium will suffer Thomson scattering off
electrons with velocities oriented in different directions. The rate of energy loss
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due to Thomson scattering is just

dE
dt

= −neσTc
[
1+ n̂ · v

c
+
(
v
c

)2]
E, (17.6.6)

where ne and v are the electron number density and velocity, respectively, and
σT is the Thomson scattering cross-section; n̂ is a unit vector in the direction of
photon travel. Since Thomson scattering conserves photons we can write

∆T
T

= −σTc
∫
ne
[
δ+

(
v
c

)2
+ n̂ · v

c
+
(
n̂ · v
c

)
δ
]
dt, (17.6.7)

where the integral is taken over a line of sight from the observer to trec and δ is
the dimensionless density perturbation in the medium.
The net anisotropy produced by the linear terms in (17.6.7) is extremely small.

The second-order term which corresponds to the interaction between the per-
turbation δ and the velocity can be significant, however, particularly if the inho-
mogeneities are evolving in the nonlinear regime. This nonlinear term is usually
called the Ostriker–Vishniac effect (Ostriker and Vishniac 1986), although it was
actually first discussed by Sunyaev and Zel’dovich (1969). For a spherically sym-
metric homogeneous cluster moving through the CMB rest frame the effect is
particularly simple:

∆T
T

= −2σTneR
(
n̂ · v
c

)
(17.6.8)

for a cluster of radius R moving at a velocity v.
There is one other important source of extrinsic anisotropy, called the Sunyaev–

Zel’dovich effect. We shall, however, devote the whole of Section 17.7 to this
because it is important in a wider cosmological context than structure-formation
theory.

17.7 The Sunyaev–Zel’dovich Effect

The physics behind the Sunyaev–Zel’dovich (SZ) effect is that, if CMB photons
enter a hot (relativistic) plasma, they will be Thomson-scattered up to higher
energies, say X-ray energies. If one looks at such a cloud in the Rayleigh–Jeans
(long-wavelength) part of the CMB spectrum, one therefore sees fewer microwave
photons and the cloud consequently looks cooler. For a cloud with electron pres-
sure pe the temperature ‘dip’ is

∆T
T

= −2
∫
peσT
mec2

dl = −2
∫
nekBTeσT
mec2

dl, (17.7.1)

where dl = c dt is the distance along a photon path through the cloud. This
effect has been detected using radio observations of rich Abell clusters of galax-
ies. Such clusters contain ionised gas at a temperature of up to 108 K (the virial
temperature) and are about 1 Mpc across. The effect has been detected at a level
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Figure 17.5 A Sunyaev–Zel’dovich (SZ) map of the cluster Abell 2163. Picture courtesy
of John Carlstrom.

of order 10−4 in several clusters, but a new instrument called the Ryle Tele-
scope, recently built in Cambridge, has improved the technique and substan-
tially reduced the observational difficulties. This instrument is very different from
most devices used to search for intrinsic CMB anisotropy because it is supposed
to map only a small part of the sky around an individual cluster. (The need to
cover a large part of the sky is one of the most demanding requirements on
CMB anisotropy searches.) It is possible with this instrument to create detailed
maps of clusters in the SZ distortion they produce; an example is shown in
Figure 17.5.
A particularly interesting aspect of this technique is that, if one has X-ray

observations of a cluster, its redshift and an SZ dip, one can, in principle, get
the distance to the cluster in a manner independent of the redshift. This is
done by combining X-ray bremsstrahlung measurements, which are proportional
to
∫
n2eT

1/2
e dl, the observed X-ray spectrum, which gives Te, and the Sunyaev–

Zel’dovich dip. These three sets of observations allow one to determine Te and
the integrals of neTe and n2eT

1/2
e through the cluster. One then assumes that the

physical size of the cluster along the line of sight is the same as its size in the plane
of the sky. Extracting an estimate of l, the total path length through the cluster,
then yields an estimate of Rc, the physical radius. Knowing its angular size, one
can thus estimate a value for the proper distance. Comparing this with the cluster
redshift yields a direct estimate of the Hubble constant which is independent of
the usual distance ladder methods described in Section 4.3. For example, if we
model the cluster as a homogeneous isothermal sphere of radius Rc, then, from
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Equation (17.7.1), the dip in the centre of the cluster will be

∆T
T

= −4RcnekBTeσT
mec2

. (17.7.2)

Obviously, more sophisticated modelling than this is necessary to obtain accurate
results, but the example (17.7.2) illustrates the principles of the method.
This method, when applied to individual clusters, has so far yielded estimates

of the Hubble constant towards the lower end of its accepted range. One should
say, however, that many clusters are significantly aspherical, so one should really
apply this technique to a sample of clusters with random orientations with respect
to the line of sight. An appropriate averaging can then be used to obtain an esti-
mate of H0 for the sample which is less uncertain than that for an individual
cluster.
As well as being detectable for individual clusters, there should be an integrated

SZ effect caused by all the clusters in a line of sight from the observer to the last
scattering surface. This is another complicated small-scale effect which is rather
difficult to model. In principle, however, constraints on the temperature fluctua-
tions produced by this effect place strong limits on the evolutionary properties of
clusters of galaxies. We shall discuss this and other constraints on cosmological
evolution in Chapter 21.

17.8 Current Status

The last 10 years have seen a tremendous revolution in CMB physics. Starting with
the COBE discovery, and its confirmation at Tenerife, increasing sensitivity and
resolution have driven observers forward so that all-sky maps of the temperature
pattern with arcminute resolution will shortly be available. At the moment the
balloon-based results fromMAXIMA and Boomerang represent the state of the art.
These data strongly suggest we live in a flat universe. Combined with supernova
results and other measurements these results have dramatically altered our view
of what the standard model of cosmology could be; ΛCDM has emerged from the
pack described in Chapter 15 and now replaces SCDM as the front runner for a
complete model of structure formation.
When the issue of the intermediate-scale anisotropy is finally resolved by all-

sky maps, a number of other questions can be addressed, connected with extrin-
sic (nonlinear) anisotropies, the detailed statistical properties of high-resolution
sky maps and after-effects of reionisation. Another question which will probably
become important in a few years’ time is connected with the polarisation of the
CMB radiation. Thomson scattering is important during the processes of decou-
pling and recombination and it induces a partial linear polarisation in the scat-
tered radiation (Rybicki and Lightman 1979). It has been calculated that the level
of polarisation expected in the CMB is about 10% of the anisotropy, i.e. a fractional
level of around 10−6. This figure is particularly sensitive to the ionisation history
and it may yield further information about possible reheating of the Universe.
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Measurement of CMB polarisation is, however, not practicable with the current
generation of telescopes and receivers.

Bibliographic Notes on Chapter 17

The field described in this chapter is developing extremely rapidly. To see how
rapidly material has become dated, it is useful to read Hogan et al . (1982), Vit-
torio and Silk (1984), Kaiser and Silk (1987), Partridge (1988) and even White et
al . (1994). Peacock (1999) is a good up-to-date reference for this material. CMB
anisotropy studies have come of age during an era dominated by the internet.
Two particularly useful resources are the CMBFAST page

http://www.physics.nyu.edu/matiasz/CMBFAST/cmbfast.html

(see Seljak and Zaldarriaga 1996) and Wayne Hu’s superb compilation of CMB
theory and experiment at

http://background.uchicago.edu/˜whu/

Problems

1. Verify the approximate relations (17.2.2) and (17.6.1).

2. Derive the results (17.2.13), (17.2.14) and (17.2.15).

3. Derive Equation (17.4.5).

4. Use the results of Chapter 11 to computer the evolution of the sound horizon as a
function of redshift through matter–radiation equivalence until the point of recom-
bination.

5. Derive the result (17.6.3).

6. A beam of unpolarised radiation is incident upon an electron. Show that the degree
of polarisation in the light scattered at an angle θ to the incident beam is Π, where

Π = 1− cos2 θ
1+ cos2 θ

.
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Peculiar Motions
of Galaxies

18.1 Velocity Perturbations

In our treatment of gravitational instability in Chapters 10 and 11 we focused
upon the properties of the density field ρ or, equivalently, the density pertur-
bations δ. The equations of motion do, however, contain another two variables,
namely the velocity field v and the gravitational potential ϕ. These two quanti-
ties are actually quite simple to derive once the behaviour of the density has been
obtained. To show this, let us write the continuity, Euler and Poisson equations
again:

∂ρ
∂t

+∇ · ρv = 0, (18.1.1a)

∂v
∂t

+ (v · ∇)v + 1
ρ
∇p +∇ϕ = 0, (18.1.1b)

∇2ϕ − 4πGρ = 0; (18.1.1 c)

cf. Equations (10.2.1). As we suggested in Section 11.2, it now proves convenient
to transform to comoving coordinates; here, however, we adopt a slightly different
approach. Since we are looking for perturbations about the uniformly expanding
solution with v = Hr, we introduce a peculiar velocity term V = v −Hr, where
v = dr/dt, and t is the cosmological time. Let us now change the time coordinate
to conformal time τ , so that dτ = dt/a(t), where a is the cosmic scale factor. This
makes the handling of the comoving equations of motion rather simpler. We also
use a comoving distance coordinate x = r/a. The equations of motion (18.1.1)
are expressed in terms of proper distances r and proper time t; the comoving



394 Peculiar Motions of Galaxies

equations, expressed in conformal time τ and with derivatives now with respect
to comoving coordinates, are

∂δ
∂τ

+∇ · [(1+ δ)V] = 0, (18.1.2a)

∂V
∂τ

+ (V · ∇)V + ȧ
a
V + ∇p

ρ
+∇ϕ = 0, (18.1.2b)

∇2ϕ − 4πGρa2δ = 0, (18.1.2 c)

where δ, V and ϕ are the density, velocity and gravitational potential perturba-
tions (in the latter case, within this comoving description, the mean value of ϕ
vanishes soϕ coincides with δϕ). Themost important difference between the two
sets of Equations (18.1.1) and (18.1.2) is that, in the Euler Equation (18.1.2b), there
is a term in ȧ/a (remember that ȧ = da/dτ) which is due to the fact that our new
system of coordinates is following the expansion and is therefore non-inertial.
This term, called the ‘Hubble drag’, causes velocities to decay in comoving coor-
dinates. There is, however, nothing strange about this: it is merely a consequence
of the choice of coordinate system.
We have shown how to solve the equations of motion to obtain the behaviour

of δ for various types of perturbations in Chapter 10. We shall now concentrate
upon longitudinal adiabatic fluctuations (remember that transverse, or vortical,
modes are generally decaying with time), and shall ignore the pressure gradient
terms in the Euler Equation (18.1.2b) because we assume k kJ. We showed in
Section 10.8 that the linear solution to the density perturbation in such a situation
behaves as a complicated function of the time and the value of Ω. We shall ignore
the decaying mode, so that δ(x) = D(τ)δ+(x), and D is the linear growth law for
the growing mode which, for Ω = 1 and matter domination, is given by D ∝ a ∝
τ2. For Ω ≠ 1 the expression for D is complicated but we do not actually need it.
In fact, we only need the expression for

f(τ) = d logD
d loga

= aḊ
ȧD
, (18.1.3)

which has a behaviour as a function of Ω given quite accurately by the approxi-
mate form f � Ω0.6. Notice that f = 1 for Ω = 1 is exact.
Now, given a solution for the density perturbation δ, one can easily derive the

velocity and gravitational potential fields in these coordinates. Because the linear
velocity field is irrotational, V can be expressed as the gradient of some velocity
potential, ΦV , i.e.

V = −∇ΦV
a
. (18.1.4)

It is helpful now to introduce the peculiar gravitational acceleration, g, which is
simply

g = −∇ϕ
a
. (18.1.5)
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From the Poisson equation we have

∇2ϕ = 3
2ΩH

2a2δ, (18.1.6)

and, from the linearised equations of motion, it is then quite straightforward to
show that

∇2ΦV = Hfa2δ. (18.1.7)

It therefore follows that ϕ ∝ ΦV ,

ϕ = 3ΩH
2f

ΦV , (18.1.8)

so that V ∝ g:

V = 2f
3ΩH

g. (18.1.9)

Notice that, for an Einstein–de Sitter universe, this last relation simply becomes
V = gt. It is also the case that, in this model, ϕ is constant for the growing mode
of linear theory. Regardless of Ω the velocity and gravitational acceleration fields
are always in the same direction in linear theory.
It is also helpful to write explicitly the relationship between g (or V ) and the

density perturbation field δ(x) by inverting the relevant version of Poisson’s equa-
tion:

V(x) = aHf(Ω)
4π

∫
δ(x′)(x − x′)

|x − x′|3 d3x′, (18.1.10)

which we anticipated in Section 17.3. The expression for g can be found from
(18.1.10) with the aid of (18.1.9).
Suppose now that the density field δ(x) has a known (or assumed) power spec-

trum P(k). From Equation (18.1.6) it follows immediately that the power spectrum
of the field ϕ can be written

Pϕ(k) = (32ΩH2a2)2P(k)k−4, (18.1.11)

which we anticipated in Section 13.4. In linear theory the velocity field may be
obtained as either the derivative of ΦV from (18.1.7) or by noting that, from the
continuity equation,

δ(x) = −∇ · V
aHf

; (18.1.12)

either way, one finds the velocity power spectrum

PV(k) = (aHf)2P(k)k−2. (18.1.13)

Of course, V is a vector field, whereas both δ andϕ are scalar fields. The velocity
power spectrum (18.1.13) must therefore be interpreted as the power spectrum
of the three components of V , each of which is a scalar function of position.
We should stress here that knowledge of P(k) is sufficient to specify all the

statistical properties of δ, V and ϕ only if δ is a Gaussian random field, which is
the case we shall assume here.
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18.2 Velocity Correlations

In the previous section we showed how the gravitational potential and, more
importantly, velocity fields are expected to behave in the gravitational instabil-
ity picture. As we did in Chapter 14 with the density field, it is now necessary
to explain how one might try to characterise the properties of V in a statistical
manner. We shall concentrate upon generalising the covariance functions of δ we
described in Section 14.9 to the case of a vector field V (Gorski 1988; Gorski et
al . 1989).
The simplest possible statistical characterisation of V is the scalar velocity

covariance function, defined by

ξV(r) = 〈V(x1) · V(x2)〉, (18.2.1)

where r = |x1 − x2|. One can show (we omit the details here) that this function
can be expressed as

ξV(r) = (H0f)2

2π2

∫∞

0
P(k)j0(kr)dk, (18.2.2)

where j0(x) = (sinx)/x is the spherical Bessel function of order zero.
This is probably the simplest statistical characterisation of the velocity field

but it does not contain information about directional correlations of the different
components of V . Since velocity information is generally available only in one
direction (the radial direction), the scalar correlation function (18.2.1) is of limited
usefulness.
To furnish a full statistical description of the field we must define a velocity

covariance tensor

Ψij(x1,x2) ≡ 〈Vi(x1)Vj(x2)〉. (18.2.3)

Using the assumption of statistical homogeneity and isotropy, we can decompose
the tensor Ψ into transverse and longitudinal parts in terms of scalar functions
Ψ⊥ and Ψ‖,

Ψij(x1,x2) = Ψ‖(r)ninj + Ψ⊥(r)(δij −ninj), (18.2.4)

which are functions only of r ;

n = (x1 − x2)/r . (18.2.5)

If u is any unit vector satisfying u · n = 0, then one can show that

Ψ‖(r) = 〈(n · V1)(n · V2)〉 (18.2.6)

and

Ψ⊥(r) = 〈(u · V1)(u · V2)〉. (18.2.7)
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In the linear regime∇×V = 0 and there is a consequent relationship between the
longitudinal and transverse functions:

Ψ‖(r) = d
dr
[rΨ⊥(r)]. (18.2.8)

One can express the two functions Ψ‖,⊥ defined in Equations (18.2.6) and (18.2.7)
in terms of the power spectrum P(k):

Ψ‖,⊥(r) = H
2f 2

2π2

∫∞

0
P(k)K‖,⊥(kr)dk, (18.2.9)

where

K‖(x) = j0(x)− 2
j1(x)
x
, K⊥(x) = j1(x)x ; (18.2.10)

j1(x) is the spherical Bessel function of order unity,

j1(x) = sinx
x2

− cosx
x
. (18.2.11)

The total velocity covariance function, ξV , defined by (18.2.2) is

ξV(r) = Ψ‖(r)+ 2Ψ⊥(r). (18.2.12)

One can also extend this description to quantities involving the shear of the veloc-
ity field, but we shall not discuss these here.
In principle one can test a number of assumptions about the velocity field V by

estimating the radial and transverse functions from a sample of peculiar veloc-
ities. For example, one can compute the expected form of the radial and trans-
verse functions and then compare the results with estimates obtained from the
data. There are, however, a number of problems with doing this kind of thing in
practice. First, one needs a rather large sample of galaxy-peculiar motions. As we
mentioned in Section 4.6, such a sample is difficult to obtain because it requires
the independent determination of both redshifts and distances for a large number
of galaxies. Moreover, such a sample would in any case only contain information
about the radial component of the galaxy-peculiar motion. One can get around
this in principle (see Section 18.5), but it does make it difficult to extract informa-
tion about the Ψ(r) directly from the data. Results from this type of analysis are
presently inconclusive, though they may become more useful when the quantity
and quality of the data improve.
There is also a deeper problem. Generally one has estimates of the peculiar

velocities of galaxies at a set of discrete points (galaxy positions) in space. When
dealing with the density field, the assumption that ‘galaxies trace the mass’ allows
one to construct a discrete set of correlation functions which are simply related
to the covariance functions of the underlying density field. For the velocity field
the situation is not so simple. If one has a continuous velocity field which is
sampled at random positions, xi in Equation (18.2.3), then the two points may be
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at any position in space (overdense or underdense). Galaxies, however, represent
regions of high matter density, so a galaxy sample does not probe all the available
density distribution. Any correlations between density and velocity will therefore
result in a biased estimate of the velocity field. One can, in principle, construct a
continuous velocity field by smoothing over discrete data, but the results depend
on exactly how this smoothing is done in a rather subtle way. One therefore has
to take care to compare like with like when relating theoretical models of V to
quantities extracted from a sample.

18.3 Bulk Flows

A somewhat simpler way to use the peculiar velocity field is to measure bulk flows
(sometimes called streaming motions), which represent the net motion of a large
region, usually a sphere centred on the observer, in some direction relative to the
pure Hubble expansion. For example, Bertschinger et al . (1990) found that a sphere
of radius 40h−1 Mpc is executing a bulk flow of some 388± 67 km s−1 relative to
the cosmological rest frame; a larger sphere of radius 60h−1 Mpc is moving at
327± 84 km s−1. How can one relate this type of measurement to theory?
Recall from Chapter 13 that one can smooth the density perturbation field to

define a mass variance in the manner of Equation (13.3.8) or (13.3.12). If the den-
sity field is Gaussian, then so will be each component of V . The magnitude of the
averaged velocity,

V = (V2
x + V2

y + V2
z )1/2, (18.3.1)

will therefore possess a Maxwellian distribution:

P(V)dV =
√
54
π

(
V
σV

)2
exp

[
−3
2

(
V
σV

)2]dV
σV
. (18.3.2)

In these equations V represents the filtered velocity field, i.e.

V = V(x;R) = 1
(2π)3

∫
Ṽ(k)WV(k;R) exp(−ik · x)dk, (18.3.3)

where WV(k;R) is a suitable window function with a characteristic scale R; Ṽ(k)
is the Fourier transform on the unsmoothed velocity field V(x; 0). From Equa-
tion (18.1.13) we find that

σ 2
V (R) =

(H0f)2

2π2

∫∞

0
P(k)W 2

V (kR)dk, (18.3.4)

by analogy with equation (13.3.12). In Equation (18.3.4), σV is the RMS value of
V(x;R), where the mean is taken over all spatial positions x. Clearly the global
mean value of V(x, R) must be zero in a homogeneous and isotropic universe. It
is a consequence of Equation (18.3.2) that there is a 90% probability of finding a
measured velocity satisfying the constraint:

1
3σV � V � 1.6σV . (18.3.5)
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The window function WV must be chosen to model the way the sample is con-
structed. This is not completely straightforward because the observational selec-
tion criteria are not always well controlled and the results are quite sensitive to
the shape of the window function. Top hat (13.3.14) and Gaussian (13.3.15) are
the usual choices in this case, as for the density field.
Because the integral in Equation (18.3.4) is weighted towards lower k than the

definition of σ 2
M given by Equation (13.3.8), which has an extra factor of k2, bulk

flows are potentially useful for probing the linear regime of P(k) beyond what
can be reached using properties of the spatial clustering of galaxies. The prob-
lem is that one typically has one measurement of the bulk flow on a scale R and
this does not provide a strong constraint on σV or P(k), as is obvious from Equa-
tion (18.3.5): if a theory predicts an RMS bulk flow of 300 km s−1 on some scale,
then a randomly selected sphere on that scale can have a velocity between 100
and 480 km s−1 with 90% probability, an allowed error range of a factor of almost
five. Until much more data become available, therefore, such measurements can
only be used as a consistency check on models and do not strongly discriminate
between them. Velocities can, however, place constraints on the possible exis-
tence of bias since σV is simply proportional to b (in the linear bias model). For
example, the standard CDMmodel predicts a bulk flow on the scale of 40h−1 Mpc
of around 180 km s−1 if b = 1. This reduces to 72 km s−1 if b = 2.5, which was,
at one time, the favoured value. The observation of a velocity of 388 km s−1 on
this scale is clearly incompatible with SCDM with this level of bias; it is, however,
compatible with a b = 1 CDM model.
It is also pertinent to mention that the factor f in Equation (18.3.4) means that

high values of V tend to favour higher values of f and therefore higher values of
Ω, remembering that f � Ω0.6. We return to this in Section 18.6.
There is an interesting way to combine large-scale bulk flow information with

small-scale velocity data. Let us consider the unsmoothed velocity field V(x; 0).
In fact, some smoothing of the velocity field is always necessary because of the
sparseness of the velocity field data, but we can assume that this scale, RS, is so
much less than R that its value is effectively zero. Consider the quantity

Σ2V (x0;R) ≡ 〈|V(x; 0)− V(x0;R)|〉2, (18.3.6)

where the average is taken over a single smoothing window centred at x0. Clearly
this represents the variance of the unsmoothed velocity field calculated with
respect to the mean value of the velocity in the window, V(x0;R). The ratio

M2(x0;R) = |V(x0;R)|2
Σ2V (x0;R)

(18.3.7)

measures, in some sense, the ‘temperature’ of the velocity field on a scale R. If
M2 > 1, then the systematic bulk flow in the smoothing volume exceeds the ran-
dom motions. If, on the other hand, M2 < 1, these small-scale random ‘thermal’
motions are larger than the systematic flow. It is appropriate therefore to regard
the spatial average of the quantity M2,

M2(R) = 〈M2(x0;R)〉x0 , (18.3.8)
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as defining a kind of cosmic Mach number as a function of scale, M(R) (Ostriker
and Suto 1990). In fact, the usual definition of the cosmic Mach number is slightly
different from that given in Equation (18.3.8) and is more straightforward to cal-
culate:

M2(R) = σ
2
V (R)
Σ2V (R)

, (18.3.9)

where Σ2V (R) is the spatial average of Σ2V (x0;R) taken over all positions x0, by
analogy with Equation (18.3.8).
The cosmic Mach number has the advantage that it probes the shape of the

primordial power spectrum in a much more sensitive manner than the bulk flow
statistics. Its main disadvantage is thatM2 is defined in terms of the ratio of two
quantities which are both subject to substantial observational uncertainties. Until
the available peculiar velocity data improve, this statistic is therefore unlikely to
provide a powerful test of structure-formation theories.

18.4 Velocity–Density Reconstruction

A more sophisticated approach to the use of velocity information is provided
by a relatively new and extremely ingenious approach developed primarily by
Bertschinger et al . (1990) which is now known as POTENT; see also Dekel et al .
(1993). This makes use of the fact that in the linear theory of gravitational instabil-
ity the velocity field is curl-free and can therefore be expressed as the gradient of
a potential. We saw in Section 18.1, Equation (18.1.8), that this velocity potential
turns out to be simply proportional to the linear theory value of the gravitational
potential. Because the velocity field is the gradient of a potential ΦV , one can use
the purely radial motions, Vr, revealed by redshift and distance information to
map ΦV in three dimensions:

∆ΦV(r , θ,φ) = −
∫ r
0
Vr(r ′, θ,φ)dr ′. (18.4.1)

It is not required that paths of integration be radial, but they are in practice easier
to deal with.
Once the potential has been mapped, one can solve for the density field using

the Poisson equation in the form (18.1.7). This means therefore that one can com-
pare the density field as reconstructed from the velocities with the density field
measured directly from the counts of galaxies. This, in principle, enables one to
determine directly the level of bias present in the data. The only other parameter
involved in the relation between V and δ is then f , which, in turn, is a simple
function of Ω. POTENT holds out the prospect, therefore, of supplying a mea-
surement of Ω which is independent of b, unlike that discussed in Section 17.3
for example. We return to the estimation of Ω from velocity data in Section 18.6.
At this point, however, it is worth mentioning some of the possible problems

with the POTENT analysis. As always, one is of course limited by the quality and
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Figure 18.1 Example of a velocity–density reconstruction using the PSCz catalogue,
showing the fluctuations of velocity and density in the Supergalactic plane. The vectors
are projections of the three-dimensional velocity field and contours show lines of equal
δ. Picture courtesy of Enzo Branchini.

quantity of the velocity data available. The distance errors, together with the rel-
ative sparseness of the data sets available, combine to produce a velocity field V
which is quite noisy. This necessitates a considerable amount of smoothing, which
is also needed to suppress small-scale nonlinear contributions to the velocity field.
The smoothed field is then interpolated to produce a continuous field defined on
a grid. The favoured smoothing is of the form

Vr(r) =
∑
i
Wi(r)Vr,i, (18.4.2)

where i labels the individual objects whose radial velocities, Vr,i, have been esti-
mated and the weighting function Wi(r) is taken to be

Wi(r)∝ n−1
i σ

−2
i exp

(
−|r − ri|2

2R2S

)
; (18.4.3)

ni is the local number density of objects, σi is the estimated standard error of
the distance to the ith object, and RS is a Gaussian smoothing radius, typically of
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order 12h−1 Mpc. If one uses clusters instead of individual galaxies, then σi can
be reduced by a factor equal to the square root of the number of objects in the
cluster, assuming the errors are random. One effect of the heavy smoothing is that
the volume probed by these studies consequently contains only a few independent
smoothing volumes and the statistical significance of any reconstruction is bound
to be poor.
Notice that the potential field one recovers then has to be differentiated to

produce the density field which will again exaggerate the level of noise. (It is
possible to improve on the linear solution to the Poisson equation by using the
Zel’dovich approximation (Section 14.2) to calculate the density perturbation δ
from the velocity potential.) The scale of the noise problem can be gauged from
the fact that a 20% distance error is of the same order as the typical peculiar
velocity for distances beyond 30h−1 Mpc.
Apart from the problem of noise, there are also other sources of uncertainty

in the applicability of this method. In any redshift survey one has to be careful
to control selection biases, such as the Malmquist bias (Section 4.2), which can
enter in a complicated and inhomogeneous way into this analysis. One also needs
to believe that the distance indicators used are accurate. Most workers in this
field claim that their distance indicators are accurate to, say, 10–20%. However, if
the errors are not completely random, i.e. there is a systematic component which
actually depends on the local density, then the results of this type of analysis can
be seriously affected. In this case the systematic error in V correlates with den-
sity in a similar way to that expected if the velocities were generated dynamically
from density fluctuations. There are some suggestions that there is indeed such a
systematic error in the commonly usedDn–σ indicator for elliptical galaxies (Guz-
man and Lucey 1993). What may happen is that old stellar populations produce
a different response in the distance indicator compared with young ones. Since
older galaxies formed earlier and in higher-density environments, the upshot is
exactly the sort of systematic effect that is so dangerous to methods like POTENT.
Applying a corrected distance indicator to a sample of elliptical galaxies essen-
tially eliminates all the observed peculiar motions, which means that the motions
derived using the uncorrected indicator were completely spurious. Whether this
type of error is sufficiently widespread to affect all peculiar motion studies is
unclear but it suggests one should regard these results with some scepticism.

18.5 Redshift-Space Distortions

The methods we have discussed in Sections 18.2–18.4 of course require one to
know peculiar motions for a sample of galaxies. There is an alternative approach,
which does not need such information, and which may consequently be more reli-
able. This relies on the fact that peculiar motions affect radial distances and not
tangential ones. The distribution of galaxies in ‘redshift space’ is therefore a dis-
torted representation of their distribution in real space. For example, dense clus-
ters appear elongated along the line of sight because of the large radial-velocity
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component of the peculiar velocities, an effect known as the ‘fingers of God’. Sim-
ilarly, the correlation functions and power spectra of galaxies should be expected
to show a characteristic distortion when they are viewed in redshift space rather
than in real space. This is the case even if the real-space distribution of matter is
statistically homogeneous and isotropic.
Let us first consider the effect of these distortions upon the two-point correla-

tion function of galaxies. The conventional way to describe this phenomenon is
to define coordinates as follows. Consider a pair of galaxies with measured red-
shifts corresponding to velocities v1 and v2. The separation in redshift space is
then just

s = v1 − v2; (18.5.1)

an observer’s line of sight is defined by

l = 1
2(v1 + v2), (18.5.2)

and the separations parallel and perpendicular to this direction are then just

π = s · l
|l| (18.5.3a)

and

rp =
√
s · s −π2, (18.5.3b)

respectively. Generalising the estimator for ξ(r) given in Equation (16.4.7b)
allows one to estimate the function ξ(rp, π):

ξ(rp, π) = nDD(rp, π)nRR(rp, π)n2DR(rp, π)
− 1. (18.5.4)

When the correlation function is plotted in the π–rp plane, redshift distortions
produce two effects: a stretching of the contours of ξ along the π -axis on small
scales (less than a few Mpc) due to nonlinear pairwise velocities, and compression
along the π -axis on larger scale due to bulk (linear) motions.
Linear theory cannot be used to calculate the first of these contributions, so one

has to use explicitly nonlinear methods. The usual approach is to use the equation

∂ξ
∂t

= 1
ax2

∂
∂x
[x2(1+ ξ)v12], (18.5.5)

which expresses the conservation of particle pairs;x is a comoving coordinate and
v12 = |s|. The Equation (18.5.5) is actually the first of an infinite set of equations
known as the BBGKY hierarchy (Davis and Peebles 1977). To close the hierarchy
one needs to make an assumption about higher moments. Assuming that the
three-point correlation function has the hierarchical form (16.5.1) and that the
real-space two-point correlation function is of the power-law form (16.4.5) leads
to the so-called cosmic virial theorem:

〈v212(r)〉 � CγH2
0QΩr

γ
0gr

2−γ, (18.5.6)
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where Cγ � 23.8 if γ = 1.8. Assuming that the radial anisotropy in ξ(rp, π)
is due to the velocities v12, then one can, in principle, determine an estimate
of Ω0 from the small-scale anisotropy. Notice, however, that there is an implicit
assumption that the galaxy correlation function and the mass covariance function
are identical, so this estimate will depend upon b in a non-trivial way.
On larger scales, the effect of redshift-space distortions is in the opposite sense.

One can understand this easily by realising that a large-scale overdensity will
tend to be collapsing in real space. Matter will therefore be moving towards a
cluster, thus flattening structures in the redshift direction. This both enhances
the appearance of walls and filaments and changes their orientation, producing
a series of ring-like structures around the observer called the ‘bull’s-eye effect’
(Melott et al . 1998).
The effect of these distortions upon the correlation function is actually quite

complicated and depends upon the direction cosine µ between the line of sight
l and the separation s. One can show, however, that the angle-averaged redshift-
space correlation function is given by the simple form

ξ̄(s) = (1+ 2
3f + 1

5f
2)ξr(s), (18.5.7)

where ξr is the real-space correlation function (Kaiser 1987; Hamilton 1992). More
instructively one can decompose ξ(rp, π) into spherical harmonics using

ξl(r) = 2l+ 1
2

∫ +1

−1
ξ(r sinθ, r cosθ)Pl(cosθ)d cosθ. (18.5.8)

A robust diagnostic of the presence of redshift distortions is via the quadrupole-
to-monopole ratio:

ξ2
ξ0

= 3+n
n

4
3f + 4

7f
2

1+ 2
3f + 1

5f 2
. (18.5.9)

In principle, these ideas permit one to estimateΩ (through the f dependence), but
this again requires that ξr for the matter should be known accurately. Fortunately,
with the arrival of redshift surveys like the 2dF GRS such measurements can now
be made with confidence (Peacock et al . 2001).
Another way to use redshift-space distortions in the linear regime is to study

their effect on the power spectrum, where the directional dependence is easier to
calculate. In fact, one can show quite easily that

Ps(k) = Pr (k)[1+ fµ2], (18.5.10)

where Ps and Pr are the redshift space and real space power spectra, respectively
(Kaiser 1987). If one can estimate the power spectrum in various directions of
k, then one can fit the expected µ dependence to obtain an estimate of f and
hence Ω. If galaxy formation is biased, then f in Equations (18.5.9) and (18.5.10)
is replaced by β = f/b. Given the paucity of available peculiar velocity data, it
seems that this type of analysis is the most promising approach to the use of
cosmological velocity information to estimate Ω.
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Figure 18.2 The correlation function of galaxies in the 2dF GRS along the line of sight
and perpendicular to it. The contours are stretched on small scales along the eye line, but
flattened into box shapes on large scales. Picture courtesy of John Peacock.

Other than their possible use in the estimation of the density parameter, the
methods we have discussed here are needed to ensure that estimates of ξ(r) or
P(k) are not biased by redshift-space distortions. The methods we have discussed
here can be used to allow for the velocity-smearing effects and thus yield less
biased estimates of these quantities (e.g. Peacock and Dodds 1994).

18.6 Implications for Ω0

We have already mentioned several times the main problem with relying on a sta-
tistical analysis of the spatial distribution of cosmic objects to test theories: the
bias. In an extreme case of bias one might imagine galaxies to be just ‘painted
on’ to the background distribution in some arbitrary way having no regard to the
distribution of mass. Ideally, one would wish to have some way of studying all
the mass, not just that part of it which happens to light up. Since velocities are
generated by gravitational instability of all the gravitating material, they provide
one way of studying, albeit indirectly, the total distribution of matter. If one uses
velocities merely as tracers of the underlying velocity field, it does not matter so
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much whether they are biased, except if the velocities of galaxies are systemati-
cally different from those of randomly selected points.
There are various ways to use the properties of peculiar motions in the esti-

mation of Ω0. As we have seen, the small-scale anisotropy introduced into sta-
tistical measures like the correlation function and power spectrum can be used
to estimate the magnitude of the radial component of the typical galaxy-peculiar
velocity. The velocities obtained by suchmethods are around 300 km s−1. One can
also use this information to infer the total amount of mass using the statistical
mechanics of self-gravitating systems in the form of the cosmic virial theorem
(18.5.6). These methods, when applied on small to intermediate scales, consis-
tently yield estimates of Ω0 in the range 0.1–0.3. These estimates also agree with
virial estimates of the masses of rich clusters of galaxies, in which the analysis
is considerably simplified if one assumes the clusters are fully relaxed and gravi-
tationally bound systems, as discussed in Chapter 4; as we mentioned there, this
value is about an order of magnitude larger than naive estimates of Ω0 based on
the mass-to-light ratios inferred for galaxy interiors. This discrepancy was one of
the initial motivations for the introduction of a bias b into the models of galaxy
clustering. Typically one compares some statistical measure of the clustering of
galaxies with the observed velocity, so what emerges is a constraint on the com-
bination β = f/b � Ω0.6/b if there is a linear bias.
As we have seen in Chapter 17, the COBE detection of microwave background

fluctuations casts doubt upon the existence of a bias sufficient to explain the
observed peculiar motions if Ω = 1, at least in the context of the CDM model.
There is still an escape route for adherents of the critical density. Since direct
determinations of Ω from dynamics have been restricted to relatively small vol-
umes which may not be representative of the Universe at large, one can claim
that we just live in an underdense part of the Universe. It is probably true that,
if one simulates an Ω = 1 CDM model, one will find some places where the local
distribution of mass is such as to produce, by the above analyses, a local value of
Ω � 0.2 by chance. This does not, however, constitute an argument against the
alternative that Ω is actually less than unity.
Recent advances in the accumulation of galaxy redshifts have made it possible

to attempt analyses of redshift-space distortions on large scales, which we also
discussed in Section 18.5. The recent analysis of the 2dF GRS by Peacock et al .
(2001) shows that β � 0.4. If the APM galaxies upon which this survey is based
are unbiased, then this means the matter density must be low; redshift distor-
tions are insensitive to the presence of Λ. As we have explained, these measure-
ments probably supply more robust methods for estimatingΩ0 than the relatively
local peculiar-motion studies that have always seemed to suggest a high value of
Ω0.6/b, consistent with an Einstein–de Sitter universe. In particular, because one
can compare the reconstructed density field with the observed galaxy distribu-
tion, it is possible, at least in principle, to break the degeneracy between models
with a low value of Ω and models having a higher density but a significant bias.
This is a relatively new technique for measuring the density parameter, however,
and it would be wise to suspend judgement upon it, at least until all possible sys-
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tematic biases have been investigated. These methods are nevertheless extremely
promising andwe anticipate that, in the near future, relatively unambiguous deter-
minations of Ω will be forthcoming.

Bibliographic Notes on Chapter 18

Historically interesting reviews of peculiar motions can be found in Rubin and
Coyne (1988), Burstein (1990), Bertschinger (1992), Dekel (1994) and Strauss and
Willick (1995). A wonderful recent review of linear redshift distortions is given by
Hamilton (1998). Other useful references are Vittorio et al . (1986), Vittorio and
Turner (1987) and Bertschinger and Juszkiewicz (1988).

Problems

1. Derive the cosmic virial theorem (18.5.6).

2. Derive Equations (18.5.7) and (18.5.8).

3. Derive the Kaiser formula (18.5.9).

4. Show that the Zel’dovich displacements in redshift space are a factor (1+ f) larger
in the line of sight than at right angles to it. Deduce that caustics form earlier in
redshift space than in real space.
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Gravitational
Lensing

In this chapter we shall discuss the cosmological applications of one of the predic-
tions of general relativity. Although it is only recently that the idea of gravitational
lensing has found applications in cosmology, the idea that massive bodies could
deflect light rays actually furnished the first experimental test of Einstein’s theory
in 1919. The story of this test has some interesting lessons for modern cosmology
so, before going onto the technical applications of gravitational lensing, we begin
with a small amount of history.

19.1 Historical Prelude

The idea that gravity might bend light did not originate with Einstein. It had been
suggested before, by Isaac Newton for example. In a rhetorical question posed in
his Opticks, Newton wrote:

Do not Bodies act upon Light at a distance, and by their action bend
its Rays; and is not this action. . . strongest at the least distance?

In other words, he was arguing that light rays themselves should feel the force of
gravity according to the inverse-square law. As far as we know, however, he never
attempted to apply this idea to anything that might be observed. Newton’s query
was addressed in 1801 by Johann Georg von Soldner. His work was motivated
by the desire to know whether the bending of light rays might require certain
astronomical observations to be adjusted. He tackled the problem using Newton’s
corpuscular theory of light, in which light rays consist of a stream of tiny particles.
It is clear that if light does behave in this way, then the mass of each particle
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must be very small. Soldner was able to use Newton’s theory of gravity to solve
an example of a ballistic scattering problem.
A small particle moving past a large gravitating object feels a force from the

object that is directed towards the centre of the large object. If the particle is
moving fast, so that the encounter does not last very long, and the mass of the
particle is much less than the mass of the scattering body, what happens is that
the particle merely receives a sideways kick which slightly alters the direction of
its motion. The size of the kick, and the consequent scattering angle, is quite easy
to calculate because the situation allows one to ignore the motion of the scatterer.
Although the two bodies exert equal and opposite forces on each other, according
to Newton’s third law, the fact that the scatterer has a much larger mass than the
‘scatteree’ means that the former’s acceleration is very much lower. This kind of
scattering effect is exploited by interplanetary probes, which can change course
without firing booster rockets by using the gravitational ‘slingshot’ supplied by
the Sun or larger planets. When the deflection is small, the angle of deflection
predicted by Newtonian arguments, θN, turns out to be

θN = 2GM
rc2

, (19.1.1)

where r is the distance of closest approach between scattering object and scat-
tered body.
Unfortunately, this calculation has a number of problems associated with it.

Chief amongst them is the small matter that light does not actually possess mass
at all. Although Newton had hit the target with the idea that light consists of
a stream of particles, these photons, as they are now called, are known to be
massless. Newton’s theory simply cannot be applied to massless particles: they
feel no gravitational force (because the force depends on their mass) and they
have no inertia. What photons do in a Newtonian world is really anyone’s guess.
Nevertheless, the Soldner result is usually called the Newtonian prediction, for
want of a better name.
Unaware of Soldner’s calculation, in 1907 Einstein began to think about the pos-

sible bending of light. By this stage, he had already formulated the equivalence
principle, but it was to be another eight years before the general theory of rela-
tivity was completed. He realised that the equivalence principle in itself required
light to be bent by gravitating bodies. But he assumed that the effect was too
small ever to be observed in practice, so he shelved the calculation. In 1911, still
before the general theory was ready, he returned to the problem. What he did
in this calculation was essentially to repeat the argument based on Newtonian
theory, but incorporating the equation E = mc2. Although photons do not have
mass, they certainly have energy, and Einstein’s theory says that even pure energy
has to behave in some ways like mass. Using this argument, and spurred on by
the realisation that the light deflection he was thinking about might after all be
measurable, he calculated the bending of light from background stars by the Sun.
For light just grazing the Sun’s surface—i.e. with r equal to the radius of the

Sun, R�, and whereM is the mass of the SunM�—Equation (19.1.1) yields a deflec-
tion of 0.87 seconds of arc; for reference, the angle in the sky occupied by the Sun
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is around half a degree. This answer is precisely the same as the Newtonian value
obtained more than a century earlier by Soldner. The predicted deflection is tiny,
but according to the astronomers Einstein consulted, it could just about be mea-
sured. Stars appearing close to the Sun would appear to be in slightly different
positions in the sky than they would be when the Sun was in another part of the
sky. It was hoped that this kind of observation could be used to test Einstein’s
theory. The only problem was that the Sun would have to be edited out of the pic-
ture, otherwise stars would not be visible close to it at all. In order to get around
this problem, the measurement would have to be made at a very special time and
place: during a total eclipse of the Sun.
In 1915, with the full general theory of relativity in hand, Einstein returned

to the light-bending problem. And he soon realised that in 1911 he had made a
mistake. The correct answer was not the same as the Newtonian result, but twice
as large. Einstein had neglected to include all effects of curved space in the earlier
calculation. The origin of the factor two is quite straightforward when one looks
at how a Newtonian gravitational potential distorts the metric of space–time. In
flat space (which holds for special relativity), the infinitesimal four-dimensional
space–time interval ds is related to time intervals dt and distance intervals dl via

ds2 = c2 dt2 − dl2; (19.1.2)

light rays follow paths in space–time defined by ds2 = 0, which are straight lines
in this case. Of course, the point about the general theory is that light rays are
no longer straight. In fact, around a spherical distribution of mass M the metric
changes so that, in the weak field limit, it becomes

ds2 =
(
1+ 2GM

rc2

)
c2 dt2 −

(
1− 2GM

rc2

)
dl2. (19.1.3)

Since the corrections of orderGM/rc2 are small, one can solve the equation ds2 =
0 by expanding each bracket in a power series.
Einstein’s original calculation had included only the first term, which corre-

sponds to the R00 part of the field equations. The second doubles the net deflec-
tion. Not only does energy gravitate, so does momentum and this appears in the
second term in the metric. The angular deflection predicted by Einstein’s equa-
tions in the Newtonian limit is therefore

θE = 4GM
rc2

, (19.1.4)

which yields 1.74 arcsec for M = M� and r = R�, compared with the 0.87 arcsec
obtained using Newtonian theory. Not only is this easier to measure, being larger,
but it also offers the possibility of a definitive test of the theory, since it differs
from the Newtonian value.
In 1912, an Argentinian expedition had been sent to Brazil to observe a total

eclipse. Light-bending measurements were on the agenda, but bad weather pre-
vented them making any observations. In 1914, a German expedition, organised
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by Erwin Freundlich and funded by Krupp, the arms manufacturer, was sent to
the Crimea to observe the eclipse due on 21 August. But when World War I broke
out, the party was warned off. Most returned home, but others were detained
in Russia. No results were obtained. The war made further European expedi-
tions impossible. One wonders how Einstein would have been treated by his-
tory if either of the 1912 or 1914 expeditions had been successful. Until 1915,
his reputation was riding on the incorrect value of 0.87 arcsec. As it turned
out, the 1919 British expeditions to Sobral and Principe were to prove his
later calculation to be right. And the rest, as they say, is history (Dyson et al .
1920).

19.2 Basic Gravitational Optics

In general it is a difficult problem to determine the trajectories of light rays in
curved space–times. However, in the cosmological setting, we can simplify the
task by applying some assumptions. For a start we assume that the global back-
ground geometry is well described by the Robertson–Walker metric we introduced
in Chapter 1. Next we make use of a Newtonian approximation for the light tra-
jectories, similar to the discussion of the previous section. We assume that a light
ray travels unperturbed from a background source until it is very close to the
lens, whereupon it is deflected by some angle we shall assume to be small. It
then follows an unperturbed trajectory from the lens to the observer. In doing
this we are obliged to require that the effective gravitational potential of the
lens Φ is such that |Φ2|  c2 and that the lens is moving with respect to a
cosmological frame with a velocity v which is much less than that of light. If
these conditions apply, then the deflection produced by the lens is going to be
small.
The deflection of a light ray, α̂, will in general be given by

α̂ = 2
c2

∫
∇⊥Φ dl, (19.2.1)

where the gradient of the Newtonian potential is taken perpendicular to the light
path and the integral is taken along photon trajectory. With the simplification
mentioned above, the gradient can be taken to be perpendicular to the original
(unperturbed) light ray rather than the actual (perturbed) one. In this case we
only need to consider the impact parameter b of the light ray as it crosses the
lens plane. The relevant potential for a point lens can be written

Φ(b, z) = − GM√
b2 + z2 , (19.2.2)

where z is the distance along the ray. For the case (19.2.2) we therefore find

∇⊥Φ(b, z) = GMb
(b2 + z2)3/2 (19.2.3)
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Figure 19.1 Gravitational lensing. A light ray travels from the source S to the observer
O passing the lens at an impact parameter ξ. The transverse distance from the optic axis
is η. The light ray is deflected through an angle α̂; the angular separations of source
and image from the optic axis are denoted β and θ, respectively. The angular-diameter
distances between observer and source, observer and lens and lens and source are Ds, Dd

and Dds, respectively. Picture courtesy of Mathias Bartelmann.

in a direction at right angles to the unperturbed ray. The deflection angle is then

α̂ = 2
c2

∫
∇⊥Φ dz = 4GM

c2b
. (19.2.4)

This is exactly the result we described in Section 19.1.
If we now assume that the deflection occurs as a kind of ‘impulse’ delivered by

the lens within a distance ±b along the original light ray, then we can simplify
matters even further. This approximation corresponds to the assumption that the
lens is infinitely thin compared with the distances from source to lens and from
observer to lens. One then considers the lens to be a mass sheet lying in a plane
usually called the lens plane. The relevant property of the sheet is its surface mass
density, Σ, where

Σ(ξ) =
∫
ρ(ξ, z)dz, (19.2.5)

in which the integral is taken over the photon path as before. It is then straightfor-
ward to show that the net deflection (now written as a vector to show its direction
in the lens plane) is given by

α̂(ξ) = 4G
c2

∫
(ξ− ξ′)Σ(ξ′)

|ξ− ξ′|2 d2ξ′. (19.2.6)
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If the distribution of mass in the lens plane is circularly symmetric, then the
deflection angle points towards the centre of symmetry and has modulus

α̂(ξ) = 4GM(ξ)
c2ξ

, (19.2.7)

where ξ is the distance from the centre of the lens andM(ξ) is obviously the mass
enclosed within a radius ξ so defined:

M(ξ) = 2π
∫ ξ
0
Σ(ξ′)ξ′ dξ′. (19.2.8)

We can now put this altogether to look at the geometry of a general lensing system
as shown in Figure 19.1. The figure introduces the reduced deflection angle α,
which is related to α̂ via

α = Dds

Ds
α̂. (19.2.9)

From the diagram, assuming small angles everywhere, we get

θDs = βDs − α̂Dds, (19.2.10)

so that

β = θ−α(θ). (19.2.11)

This is called the lens equation; it relates the angular position of images and
sources. Note that angular-diameter distances must be used in this and the fol-
lowing.
As an example let us look at a case with constant surface mass density Σ in the

lens plane. From Equation (19.2.7) we obtain

α(θ) = Dds

Ds
× 4G
c2ξ

× Σπξ2 = 4πGΣ
c2

Dd

Dds
Dsθ, (19.2.12)

where ξ = Ddθ. In this case we can define a critical surface mass density

Σ∗ = c2

4πG
Ds

DdDds
, (19.2.13)

where D is defined by

D = DdDs

Dds
. (19.2.14)

The interpretation of the critical density Σ∗ is that the deflection angle α(θ) =
θ so that β = 0 for any θ. This is a perfect lens which brings all light rays to
focus at a well-defined focal length. Real gravitational lenses are not perfect, but
nevertheless display interesting optical properties. Lenses which have Σ > Σ∗
typically produce multiple images of a background source.
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Now let us generalise to the case of a circular lens with an arbitrary mass profile.
The lens Equation (19.2.10) then becomes

β = θ − Dds

DdDs

4GM(θ)
c2θ

. (19.2.15)

If the mass density is sufficient, then a source with β = 0, i.e. one that lies on the
optic axis, is lensed into a ring with radius θE, where

θ2E =
4GM(θE)
Dc2

. (19.2.16)

This is called the Einstein radius.
For a point mass we obtain

θE =
(
4GM
Dc2

)1/2
. (19.2.17)

We can use this to rewrite the lens equation in this case as

β = θ − θ
2
E

θ
, (19.2.18)

which has two solutions:

θ± = 1
2(β±

√
β2 + 4θ2E). (19.2.19)

The two solutions correspond to two images, one lying on either side of the source.
One image is always inside the Einstein ring and the other outside it. If the source
is moved further from the optic axis (i.e. if β increases), then one image gets closer
to the lens and the other gets nearer the source. Gravitational lensing changes the
apparent solid angle of the source and therefore results in a magnification by a
factor equal to the ratio of the image area to the source area. For a circular lens
the magnification factor µ is easily seen to be

µ = θ
β
dθ
dβ
. (19.2.20)

19.3 More Complicated Systems

The preceding section dealt with simple lens systems. In the following we shall
look at some examples of how to deal with the more general case without any spe-
cial symmetry. To simplify the notation let us start by defining a scaled potential
ψ(θ) by

ψ(θ) = 1
D

2
c2

∫
Φ(Ddθ, z)dz. (19.3.1)
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This is useful because the gradient of ψ with respect to θ is just the deflection
angle α because

∇θψ = Dd∇ξψ = 2
c2
Dds

Ds

∫
∇⊥Φ dz = α. (19.3.2)

Moreover, the Laplacian ofψ with respect to θ is proportional to the surface mass
density in the lens plane:

∇2
θψ = 2

c2
DdDds

Ds

∫
∇2
ξΦ dz =

2
c2
DdDds

Ds
× 4πGΣ = 2

Σ
Σ∗
. (19.3.3)

It is then convenient to define the convergence κ via

κ(θ) ≡ Σ(θ)
Σ∗

, (19.3.4)

so that the Laplacian is just twice the convergence in a two-dimensional version
of Poisson’s equation:

∇2
θψ = 2κ. (19.3.5)

This means that we can write the potential as a function of κ using

ψ(θ) = 1
π

∫
κ(θ) log |θ− θ′|d2θ′. (19.3.6)

Because the deflection angle is just the gradient of the potential ψ from (19.3.2),
we can write

α(θ) = 1
π

∫
κ(θ)

θ− θ′
|θ− θ′|2 d

2θ′, (19.3.7)

which is equivalent to the Equation (19.2.10) we obtained earlier.
In general the lens produces a mapping of the source plane onto the image

plane. The local properties of this mapping are best specified by the Jacobian
matrix

Aij = ∂βi∂θj =
(
δij − ∂αi(θ)∂θj

)
=
(
δij − ∂2ψ

∂θi∂θj

)
. (19.3.8)

The Jacobian Aij may be thought of as the inverse of a magnification tensor Mij .
The local distortion of an image due to the lens given by the determinant of A. If
a solid angle δβ2 of the source becomes δθ2 in the image, then

∂θ2

∂β2
= detM = 1

detA
. (19.3.9)

This is a general form of Equation (19.2.18).
The general properties of the mapping from source to image can be described

somewhat more simply than the general form (19.2.18). First define a notation
such that

ψij ≡ ∂2ψ
∂θi∂θj

. (19.3.10)
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Using (19.3.5) we find that

κ = 1
2(ψ11 +ψ22). (19.3.11)

We can also use the elements of ψij to construct components of a shear tensor.
First define

γ1 = 1
2(ψ11 −ψ22) ≡ γ cos(2φ) (19.3.12a)

and

γ2 = ψ12 = ψ21 ≡ γ sin(2φ). (19.3.12b)

Using these definitions we can write

A =
(
1− κ − γ1 −γ2

−γ2 1− κ + γ1

)
, (19.3.13)

which can also be written

A = (1− κ)
(
1 0
0 1

)
− γ

(
cos2φ sin2φ
sin2φ − cos2φ

)
. (19.3.14)

This notation is useful because it allows a simple visual interpretation of the
effects of lensing. A pure convergence κ corresponds to an isotropicmagnification
of the source in such a way that a circular source becomes a larger but still circular
image. The components γ1 and γ2 represent shear in such a way that

γ =
√
γ21 + γ22 (19.3.15)

represents the magnitude of the shear and φ its orientation. A non-zero shear
transforms a circular source into an elliptical image.
In some places the mapping between source and image plane becomes singu-

lar. These singularities are normally called caustics and they lead to interesting
optical effects owing to the non-uniqueness of the mapping between image and
source planes to which they correspond. Basically a given (extended) lens will
generate a set of caustics in the source plane. When a source crosses such a
caustic a new pair of images is produced in the image. An extended lens can
produce many images, depending on the mass distribution in the lens plane,
while a point-mass lens only produces two. Near the caustics the shape of the
images can be complicated, producing near-circular giant arcs. These can be
very bright, owing to the magnification effect which is formally infinite at a
caustic.
The consequences of these can be spectacular but complicated and, generally,

considerable modelling is needed to understand the complex images obtained.
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19.4 Applications

19.4.1 Microlensing

Even if a gravitational lens is not strong enough to form two distinct images of a
background source it may still amplify its brightness to an observable extent (e.g.
Paczynski 1986a,b). This phenomenon is called microlensing. If a star or other
object approaches to within an angle θE of a lens, then it will be magnified and
will consequently brighten. Inside the galactic halo stars will move across the line
of sight to a distant source, such as a star in the Large Magellanic Cloud (LMC).
As it traverses the lensing region it will brighten and diminish in a symmetrical
fashion. Moreover, because gravitational lensing is achromatic, the variation in
brightness can be distinguished from intrinsic stellar variability, which is usually
different at different wavelengths. The timescale for a microlensing event in our
Galaxy is

t∗ = DdθE
v
, (19.4.1)

where v is the transverse velocity of the lens with respect to the source. For
solar mass lenses at a distance Dd of order 10 kpc and v of order 200 km s−1
this timescale is of order a few months. Continuous monitoring of stars over
this timescale is necessary to detect microlensing. Because the probability of
a lens crossing the Einstein radius is small, many millions of stars need to be
monitored.
The idea that galactic-halo dark matter might lens the light from distant stars

has recently born fruit with convincing evidence for microlensing of stars in the
LMC by sub-stellar mass objects in the halo of the Milky Way (Alcock et al . 1993;
Aubourg et al . 1993). Although these do not strongly constrain the total amount
of dark matter in our Galaxy, the relatively small number of microlenses detected
does constrain the contribution to the mass of the halo in brown dwarfs; see Carr
(1994).
A more exotic claim by Hawkins (1993) to have observed microlensing on a

cosmological scale by looking at quasar variability is much less convincing. To
infer microlensing from quasar light curves requires one to exclude the possi-
bility that the variability seen in the light curves be intrinsic to the quasar. One
might naively expect the timescale of intrinsic variability to increase to increase
with QSO redshift as a consequence of cosmological time dilation. This increase
is not seen in the data, suggesting the variation is not intrinsic, but time dila-
tion is only one of many effects that could influence the timescale of intrinsic
variability in either direction. For example, the density of cosmological material
surrounding a QSO increases by a factor of eight between z = 1 and z = 3. Alexan-
der (1995) gives arguments that suggest that observational selection effects may
remove the expected correlation and replace it with the inverse effect that is actu-
ally observed. It is not inconceivable therefore that a change in fuelling efficiency
could change the timescale of variability in the opposite direction to the time dila-
tion effect. In any case, the classic signature of microlensing is that the variability
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Figure 19.2 William Herschel Telescope images (taken by Geraint Lewis and Michael
Irwin) of the ‘Einstein cross’, a multiply imaged quasar. The two images were taken three
years apart and the variation in brightness may be due to microlensing within our Galaxy.

be achromatic: even this is not known about the variability seen by Hawkins. QSOs,
and active galaxies in general, exhibit variability on a wide range of timescales in
all wavelength regions from the infrared to X-rays. If the lensing interpretation
is correct, then one should be able to identify the same timescale of variability
at all possible observational wavelengths. An independent analysis of QSO vari-
ability by Dalcanton et al . (1994) has also placed Hawkins’ claim in doubt, so we
take the evidence that extragalactic microlensing has been detected to be rather
tenuous.

19.4.2 Multiple images

The earliest known instance of gravitational lensing by anything other than the
Sun was the famous double quasar 0957+561, which upon close examination was
found to be a single object which had been lensed by an intervening galaxy (Walsh
et al . 1979). As time has gone by, searches for similar such lensed systems have
yielded more candidates, but the total number of candidate lens systems known
is still small.
It has been known for some time that the predicted frequency of quasar lens-

ing depends strongly on the volume out to a given redshift (Turner et al . 1984;
Turner 1990; Fukugita and Turner 1991) and that the number of lensed quasars
observed can consequently yield important constraints on cosmological models.
Compared with the Einstein–de Sitter model, both flat cosmologies with a cosmo-
logical constant and open low-density (Ω0 < 1) models predict many more lensed
systems. The effect is particularly strong for the flat Λmodels: roughly ten times
as many lenses are expected in such models than in the Ω0 = 1 case. Of course,
the number of lensed systems also depends on the number and mass of inter-
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vening objects in the volume out to the quasar, so any constraints to emerge are
necessarily dependent upon assumptions about the evolution of the mass func-
tion of galaxies, or at least their massive haloes. Nevertheless, claims of robust
constraints have been published (Kochanek 1993; Maoz and Rix 1993; Mao and
Kochanek 1994), which constrain the contribution of a Λ term to the total den-
sity of a flat universe to ΩΛ < 0.5 at 90% confidence, which seems to contradict
the results from high-redshift supernovae we discussed in Chapter 4. Constraints
on open, low-density models are much weaker: Ω0 > 0.2. Unless some signifi-
cant error is present in the modelling procedure adopted in these studies, the
QSO lensing statistics appear to rule out precisely those flat Λ-dominated models
which have been held to solve the age problem and also allow flat spatial sections,
although at a relatively low confidence level and at the expense of some model
dependence. If our understanding of galaxy evolution improves dramatically it
will be possible to refine these limits. New large-scale QSO surveys will also help
improve the statistics of the lensed objects.

19.4.3 Arcs, arclets and cluster masses

There exists a possible independent test of the dynamical and X-ray masses of
rich clusters which does not depend on the assumption of virial or hydrostatic
equilibrium. Gravitational lensing of the light from background objects depends
on the total mass of the cluster whatever its form and physical state, leading to
multiple and/or distorted images of the background object.
The possible lensing phenomena fall into two categories: strong lensing in

rich clusters can probe the mass distribution in the central parts of these
objects; and weak lensing distortions of background galaxies can trace the mass
distribution much further out from the cluster core. The discovery of giant
arcs in images of rich clusters of galaxies as a manifestation of strong grav-
itational lensing (Tyson et al . 1990; Fort and Mellier 1994) has led to a con-
siderable industry in using models of the cluster lens to determine the mass
profile. Smaller arcs – usually called arclets – can be used to provide more
detailed modelling of the lensing mass distribution. For recent applications of
this idea, see Kneib et al . (1993) and Smail et al . (1995); the latter authors,
for example, infer a velocity dispersion of σ 2 � 1400 km s−1 for the cluster
AC114.
Important though these strong lensing studies undoubtedly are, they generally

only probe the central parts of the cluster and say relatively little about the dis-
tribution of matter in the outskirts. They do, for example, seem to indicate that
the total distribution of matter is more centrally concentrated than the gas dis-
tribution inferred from X-ray observations. On the other hand, estimates of the
total masses obtained using strong lensing arguments are not in contradiction
with virial analysis methods described above.
Weak lensing phenomena – the slight distortions of background galaxies pro-

duced by lines of sight further out from the cluster core – can yield constraints
on the haloes of rich clusters (Kaiser and Squires 1993; Broadhurst et al . 1995).



Applications 421

Figure 19.3 HST image of the rich cluster Abell 2218 showing numerous giant arcs and
arclets. Picture courtesy of the Space Telescope Science Institute.

It is also possible to use fluctuations in the N(z) relation of the galaxies behind
the cluster to model the mass distribution.
The technology of these methods has developed rapidly and has now been

applied to several clusters. Preliminary results are generally indicative of a larger
total mass than is inferred by virial arguments, suggesting that there exists even
more dark matter than dynamics would suggest. However, this technique is rel-
atively young and it is possible that not all the systematic errors have yet been
ironed out, so we take these results as indicating that this is a good – indeed
important – method for use in future studies, rather than one which is providing
definitive results at the present time.

19.4.4 Weak lensing by large-scale structure

The idea that clusters of galaxies produce observable distortions in the weak
lensing limit suggests it may be possible to observe lensing along any line of
sight through the background distribution of clusters. What one will see look-
ing through an arbitrary distribution that lacks the special symmetry of a rich
cluster will be correlated distortions of the shapes of galaxies. One needs a wide
field in order to see sufficient galaxies to obtain a signal, because the shear of
any one galaxy is small compared with the distribution of shapes that exists in
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Figure 19.4 Simulation of the weak lensing distortion induced by large-scale structure.
The pattern of density perturbations is shown as a greyscale picture upon which lines are
superimposed representing the size and angle of the distortions. Picture courtesy of Alex
Refregier.

the unlensed galaxy population. However difficult this may be, the payoff is large
because one can in principle obtain, from maps of sheared galaxy images, maps
of the projected dark-matter distribution. This is a new field, but feasibility stud-
ies already show that the signal is measurable (Bacon et al . 2000; van Waerbeke
et al . 2000; Wilson et al . 2001; Wittman et al . 2000). When larger CCD arrays
go online, we will have maps of the evolved dark-matter distribution that can
complement maps of the galaxy distribution obtained from redshift surveys and
maps of the primordial fluctuations obtained from the cosmic microwave back-
ground.

19.4.5 The Hubble constant

One of the consequences of gravitational lensing is that the paths traversed by
photons coming from the same source but forming different images may have
different lengths. If the source happens to be variable, then one can hope to
recognise a pattern in its output in more than one image at different times. If
one understands the structure of the lens, then one can estimate the distances
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involved. Knowing the redshift allows one to obtain an estimate of H0. This idea,
of course, rests on the correct identification of the time delay. An example is the
quasar 0957+ 561 which has a measured time lag of 415 days between features
seen in the two images it presents to the observer. The lens seems to be domi-
nated by a single galaxy sitting inside a cluster and the modelling is consequently
fairly straightforward. Preliminary estimates by Grogin and Narayan (1996) yield
a rather high value of the Hubble constant around 80 km s−1 Mpc−1 but with con-
siderable theoretical uncertainty in the model parameters needed to reproduce
the known images. In principle, such studies can yield accurate estimates of the
Hubble constant but the technique is relatively young and clearly needs more
work to develop it.

19.5 Comments

It is rather ironic that the oldest known observational consequence of general
relativity should produce one of the newest and most dynamic areas in cosmol-
ogy. Now that observational technology is so advanced and wide-field cameras are
becoming increasingly available, it seems likely that weak lensing will have a par-
ticularly strong impact on cosmology in the relatively near future. In particular we
should be able to understand the extent to which the large-scale structure seen in
the galaxy distribution represents genuine fluctuations in the mass density and
how much may be attributable to bias. Even the cosmic microwave background
offers the possibility for lensing studies.

Bibliographic Notes on Chapter 19

Schneider et al . (1992) is now the standard reference book on gravitational lens-
ing. Other useful review articles are Blandford and Narayan (1992) and Fort and
Mellier (1994). The paper by Refsdal (1964) is a classic which inspired much work
in this area, long before the observational discovery of extragalactic lensed sys-
tems. Much of the material for this chapter was gleaned from the lecture notes of
Narayan and Bartelmann, which are available on the internet at

http://www.mpa-garching.mpg.de/Lenses/Preprints/JeruLect.html

Problems

1. If Dd, Ds and Dds are angular-diameter distances, show that, in general, Dds ≠ Ds −
Dd.

2. Derive Equation (19.2.14).

3. Obtain estimates of the Einstein radius for (i) a point lens of mass M� and D =
10 kpc, and (ii) a lens of mass 1011M� and D = 1 Gpc.
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4. Show that, for a point-mass lens, the magnifications of the two images are given by

µ± = u2 + 2

u
√
u2 + 4

± 1
2 ,

where u = β/θE. Hence show that when β = θE the total magnification of flux is
1.34.

5. A singular isothermal sphere is defined by a three-dimensional density profile of
the form

ρ(r) = σ 2
v

2πGr 2
.

Show that the deflection produced by such a lens is 4πσ 2
v /c2 and derive an expres-

sion for the Einstein radius. Under what circumstances does this system produce
multiple images?

6. Show that a circular source of unit radius is mapped into an ellipse with major and
minor axes (1 − κ − γ)−1 and (1 − κ + γ)−1, respectively. Show further that the
magnification is [(1− κ)2 − γ2]−1.



20

The High-Redshift
Universe

20.1 Introduction

In the previous four chapters we have tried to explain how observations of galaxy
clustering, the cosmic microwave background, galaxy-peculiar motions and grav-
itational lensing can be used to place constraints on theories of structure forma-
tion in the Big Bang model. In this chapter we shall discuss a number of indepen-
dent pieces of evidence about the process of structure formation which can also,
in principle, shed light upon how galaxies and clusters of galaxies might have
formed. The common theme uniting these considerations is that they all involve
phenomena occurring after recombination and before the present epoch.
Since galaxy properties are only observable at relatively small distances, and

therefore at relatively small lookback times, galaxy clustering and peculiar
motions give us information about the Universe here and now. On the other hand,
primary anisotropies of the CMB yield information about the Universe as it was
at t � trec. In between these two observable epochs lies a ‘dark age’, before visi-
ble structure appeared but after matter was freed from the restraining influence
of radiation pressure and viscosity. As we shall see, there are, in fact, a number
of processes that can yield circumstantial evidence of various goings-on in this
interval and these can, in turn, give us important insights into the way structure
formation can have occurred. It should be said at the outset, however, that many
of the issues we shall discuss in this chapter are controversial and clouded by
observational uncertainties. We shall therefore concentrate upon the questions
raised by this set of phenomena, rather than trying to incorporate them firmly in
an overall picture of galaxy formation.
We have already mentioned, in Chapter 17, some ways of probing the post-

recombination Universe, by exploiting secondary anisotropies in the CMB radi-
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ation such as the Sunyaev–Zel’dovich effect. We shall raise some of these issues
again here in the context of other observations and theoretical considerations. For
the most part, however, this chapter is concerned with early signatures of galaxy
formation, sources of radiation at high redshift and constraints on the properties
of the intergalactic medium (IGM) at moderate and high redshifts.

20.2 Quasars

The most obvious way to acquire information about the Universe at early times is
to locate objects with high redshifts. To be detectable, such objects must be very
luminous at frequencies that get redshifted into the observable range of some
earthly detector.
The objects with largest known redshifts are the quasars. The current record

holder has z = 6.28, but quasars with redshifts as high as this are very diffi-
cult to detect and/or identify. As we shall see, even the observation of a single
high-redshift quasar can place strong direct constraints on models of structure
formation. There are many more quasars at z � 2 than at the present epoch. Efs-
tathiou and Rees have estimated that the comoving number density of quasars
at this epoch (i.e. scaled to the present epoch), with luminosity greater than
LQ � 2.5× 1046 erg s−1, is

nQ(> LQ) � 1.5× 10−8(h−1 Mpc)−3. (20.2.1)

At higher redshifts the luminosity function of quasars is very poorly known. It
seems unlikely that the number density given in (20.2.1) rises drastically and there
is also little evidence that it falls sharply before z � 3.5. The existence of the
record holder shows that there are at least some quasars with redshifts of order 5.
The usual model for a quasar is that its luminosity originates from matter

accreting onto a central black hole embedded within a host galaxy. The central
mass required depends on the luminosity, the lifetime of the quasar tQ (which is
poorly known) and the efficiency ε with which the rest-mass energy is released as
radiation. For quasars with the luminosity given above, the required mass is

MQ � 5× 107h−2ε−1
( tQ
108 years

)
M�. (20.2.2)

The number density of quasars given in (20.2.1) is, of course, very much less than
the present value for galaxies. In a hierarchical clustering model, however, the
number of bound objects on a given mass scale decreases at earlier times. It is
an interesting exercise therefore to see if the existence of objects on the mass
scale required to house a quasar contradicts theories of galaxy formation. To do
this we first need to calculate how big the parent galaxy of a quasar has to be.
There are three factors involved: the fraction fb of the matter in baryonic form
which is subject to the constraints discussed in Chapter 8; the fraction fr of the
baryons retained in a halo and not blown out by supernova explosions when star
formation begins; the fraction fh of the baryons which participate in the fuelling
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of the quasar. All these factors are highly uncertain, so one can define a single
quantity F = fbfrfh to include them all. It is unlikely that F can be larger than
0.01.
To model the formation of haloes we can use the Press–Schechter theory dis-

cussed in Section 14.5 (Efstathiou and Rees 1988). The z-dependence of the mass
function of objects can be inserted into equation (14.5.7) by simply scaling the
RMS density fluctuation by the factor 1/(1+z) coming from linear theory. Recall
that the parameter δc in equation (14.5.7) specifies a kind of threshold for col-
lapse and that δc � 1.68 is the appropriate value for isolated spherical collapse;
numerical experiments suggest this analytic formula works fairly well, but with a
smaller δc � 1.33. Anyway, the number density of quasars is

nQ(> L, z) �
∫ t(z)
tmin

∫∞

Mmin

∂n(M,z)
∂t

dM dt. (20.2.3)

The lower limit of integration Mmin is the minimum mass capable of housing a
quasar, which is estimated to be

Mmin � 2× 1011
( tQ
108 years

)(
ε
0.1

)−1( F
0.01

)−1( L
LQ

)
M�, (20.2.4)

and tmin is either 0 or [t(z)− tQ], whichever is the larger. Using equation (14.5.7)
with δc = 1.33 and defining

β =
(
L
LQ

)( tQ
108 years

)(
ε
0.1

)−1( F
0.01

)−1
, (20.2.5)

Efstathiou and Rees (1988) obtained, for a spectrum with n � −2.2 (appropriate
to a CDM model on the relevant scales),

nQ(> L, z) � 1× 10−3(1+ z)5/2
( tQ
108 years

)
β−0.866 exp[−0.21β0.266(1+ z)2],

(20.2.6)

in the same units as Equation (20.2.1). Notice above all that this falls precipi-
tously at high z because of the exponential term. This can place strong constraints
on models where structure formation happens very late, such as in the biased
CDM picture. The result (20.2.6) is not, however, incompatible with (20.2.1) for
this model. A similar exercise could be attempted for clusters of galaxies and
absorption-line systems in quasar spectra, but we shall not discuss this possibil-
ity here.
As we explained in Chapter 4 there are also other types of active galaxy that can

be observed at high redshifts, although not as high as quasars. One of these types
is particularly interesting in the present context: steep-spectrum radio sources. In
recent years, samples of these objects have been studied in the optical wavelength
region. Many of them are associated with galaxies having redshifts greater than
two, and one, called 4C41.17, has a redshift of 3.8, which is the largest known red-
shift of a galaxy. These objects may yield important clues about the relationship
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between activity, such as jets, and star formation in galaxies. One popular idea
for the peculiar optical morphology of these objects and the alignment between
their radio jets and optical emission is that a radio jet may have triggered star for-
mation in the parent galaxy. The fact that these objects have considerable optical
emission allows one to study their stellar populations to figure out possible ages.
This is difficult because of the high redshift, whichmeans that interesting features
of the optical spectrum are shifted into the infrared K-band, which is notoriously
problematic to work in. It has been claimed that these objects have relatively old
stellar populations: if true, this would be a significant problem for some theories.
At the moment, however, it is best to keep an open mind about these claims; we
shall mention these objects again in Section 20.6.

20.3 The Intergalactic Medium (IGM)

We now turn our attention to various constraints, not on objects themselves, but
on the medium between them: the IGM.

20.3.1 Quasar spectra

Observations of quasar spectra allow one to probe a line of sight from our Galaxy
to the quasar. Absorption or scattering of light during its journey to us can, in
principle, be detected by its effect upon the spectrum of the quasar. This, in turn,
can be used to constrain the number and properties of absorbers or scatterers,
which, whatever they are, must be associated with the baryonic content of the
IGM. Before we describe the possibilities, it is therefore useful to write down the
mean number density of baryons as a function of redshift:

nb � 1.1× 10−5Ωbh2(1+ z)3 cm−3. (20.3.1)

This is an important reference quantity for the following considerations.

20.3.2 The Gunn–Peterson test

Neutral hydrogen has a resonant scattering feature associated with the Lyman-α
atomic transition. This resonance is so strong that it is possible for a relatively
low neutral-hydrogen column density (i.e. number-density per unit area of atoms,
integrated along the line of sight) to cause a significant apparent absorption at
the appropriate wavelength for the transition. Let us suppose that light travels
towards us through a uniform background of neutral hydrogen. The optical depth
for scattering is

τ(λ0) = c
H0

∫
σ(λ0a/a0)nI(t)Ω−1/2

(
a0
a

)−3/2 da
a
, (20.3.2)
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where σ(λ) is the cross-section at resonance and nI is the proper density of neu-
tral hydrogen atoms at the redshift corresponding to this resonance. (The usual
convention is that HI refers to neutral and HII to ionised hydrogen.) We have
assumed in (20.3.2) that the Universe is matter dominated. The integral is taken
over the width of the resonance line (which is very narrow and can therefore be
approximated by a delta function) and yields a result for τ at some observed
wavelength λ0. It therefore follows that

τ = 3Λλ3αnI
8πH0Ω1/2 (1+ z)−3/2, (20.3.3)

where Λ = 6.25×108 s−1 is the rate of spontaneous decays from the 2p to the 1s
level of hydrogen (the Lyman-α emission transition); λα is the wavelength corre-
sponding to this transition, i.e. 1216 Å. Equation (20.3.3) can be inverted to yield

nI = 2.4× 10−11Ω1/2h(1+ z)3/2τ cm−3. (20.3.4)

This corresponds to the optical depth τ at z = (λ0/λα) − 1, when observed at a
wavelength λ0.
The Gunn–Peterson test (Gunn and Peterson 1965) takes note of the fact that

there is no apparent drop between the long-wavelength side of the Lyman-α emis-
sion line in quasar spectra and the short-wavelength side, where extinction by
scattering might be expected. Observations suggest a (conservative) upper limit
on τ of order 0.1, which translates into a very tight bound on nI:

nI < 2× 10−12Ω1/2h(1+ z)3/2 cm−3. (20.3.5)

Comparing this with Equation (20.3.1) with Ωb = 1 yields a constraint on the
contribution to the critical density due to neutral hydrogen:

Ω(nI) < 2× 10−7Ω1/2h−1(1+ z)−3/2. (20.3.6)

There is no alternative but to assume that, by the epoch one can probe directly
with quasar spectra (which corresponds to z � 4), the density of any uniform
neutral component of the IGM was very small indeed.
One can translate this result for the neutral hydrogen into a constraint on the

plasma density at high temperatures by considering the balance between colli-
sional ionisation reactions,

H+ e− → p+ e− + e−, (20.3.7a)

and recombination reactions of the form

p+ e− → H+ γ. (20.3.7b)

The physics of this balance is complicated by the fact that the cross-sections for
these reactions are functions of temperature. It turns out that the ratio of neutral
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hydrogen to ionised hydrogen, nI/nII, has a minimum at a temperature around
106 K, and at this temperature the equilibrium ratio is

nI
nII

� 5× 10−7. (20.3.8)

Since this is the minimum possible value, the upper limit on nI therefore gives
an upper limit on the total density in the IGM, which we can assume to be made
entirely of hydrogen:

ΩIGM < 0.4Ω1/2h−1(1+ z)−3/2. (20.3.9)

If the temperature is much lower than 106 K, the dominant mechanism for ion-
isation could be electromagnetic radiation. In this case one must consider the
equilibrium between radiative ionisation and recombination, which is more com-
plex and requires some assumptions about the ionising flux. There are probably
enough high-energy photons from quasars at around z � 3 to ionise most of the
baryons if the value of Ωb is not near unity, and there is also the possibility that
early star formation in protogalaxies could also contribute substantially. Another
complication is that the spatial distribution of the IGM might be clumpy, which
alters the average rate of recombination reactions but not the mean rate of ionisa-
tions. One can show that, for temperatures around 104 K, the constraint emerges
that

ΩIGM < 0.4I21Ω1/2h−3/2(1+ z)9/4, (20.3.10)

if the medium is not clumpy and the ionising flux, I21, is measured in units of
10−21 erg cm−2 s−1 Hz−1 ster−1. The limit (20.3.10) is reduced if there is a signifi-
cant clumping of the gas.
These results suggest that the total IGM density cannot have been more than

ΩIGM � 0.03 at z � 3, whatever the temperature of the plasma. This limit is
compatible with the nucleosynthesis bounds given in Section 8.6.

20.3.3 Absorption line systems

Although quasar spectra do not exhibit any general absorption consistent with
a smoothly distributed hydrogen component, there are many absorption lines in
such spectra which are interpreted as being due to clouds intervening between
the quasar and the observer and absorbing at the Lyman-α resonance. An example
spectrum is shown in Figure 20.1.
The clouds are grouped into three categories depending on their column den-

sity, which can be obtained from the strength of the absorption line. The strongest
absorbers have column densities Σ � 1020 atoms cm−2 or more, which are compa-
rable with the column densities of interstellar gas in a present-day spiral galaxy.
This is enough to produce a very wide absorption trough at the Lyman-α wave-
length and these systems are usually called damped Lyman-α systems. These are
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Figure 20.1 An example of a quasar spectrum showing evidence of absorption lines at
redshifts lower than the Lyman-α emission of the quasar. Picture courtesy of Sandhya
Rao.

relatively rare, and are usually interpreted as being the progenitors of spiral discs.
They occur at redshifts up to around 3 (Wolfe et al . 1993).
A more abundant type of object is the Lyman limit system. These have

Σ � 1017 atoms cm−2 and are dense enough to block radiation at wavelengths
near the photoionisation edge of the Lyman series of lines. Smaller features,
with Σ � 1014 atoms cm−2 appear as sharp absorption lines at the Lyman-α wave-
length. These are very common, and reveal themselves as a ‘forest’ of lines in the
spectra of quasars, hence the term Lyman-α forest. The importance of the Lyman
limit is that, at this column density, the material at the centre of the cloud will
be shielded from ionising radiation by the material at its edge. At lower densities
this cannot happen.
As we have already mentioned, the damped Lyman-α systems have surface den-

sities similar to spiral discs. It is natural therefore to interpret them as proto-
galactic discs. The only problem with this interpretation is that there are about
ten times as many such systems at z � 3 than one would expect by extrapolating
backwards the present number of spiral galaxies. This may mean that, at high red-
shift, these galaxies are surrounded by gas clouds or very large neutral hydrogen
discs which get destroyed as the galaxies evolve. It may also be that many of these
objects end up as low-surface-brightness galaxies at the present epoch, which do
not form stars very efficiently (e.g. Davies et al . 1988): in such a case the present
number of bright spirals is an underestimate of the number of damped Lyman-α
systems that survive to the present epoch. It is also pertinent to mention that
these systems have also been detected in CaII, MgII or CIV lines and that they do
seem to have significant abundances of elements heavier than helium. There is
some evidence that the fraction of heavy elements decreases at high redshifts.
The Lyman-α forest clouds have a number of interesting properties. For a start

they provide evidence that quasars are capable of ionising the IGM. The number
densities of systems observed along lines of sight towards different quasars are
similar, which strengthens the impression that they are intervening objects and
not connected with the quasar. At redshifts near that of the quasar the num-
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ber density decreases markedly, an effect known as the proximity effect. The idea
here is that radiation from the quasar substantially reduces the neutral hydrogen
fraction in the clouds by ionisation, thus inhibiting absorption at the Lyman-α res-
onance. Secondly, the total mass in the clouds appears to be close to that in the
damped systems or that seen in present-day galaxies. This would be surprising if
the forest clouds were part of an evolving clustering hierarchy, but if they almost
fill space then one might not see any strong correlations in any case. Thirdly,
the comoving number density of such systems is changing strongly with redshift,
indicating, perhaps, that the clouds are undergoing dissipation. Finally, and most
interestingly from the point of view of structure formation, the absorption sys-
tems seem to be only weakly clustered, in contrast to the distribution of galaxies.
How these smaller Lyman-α systems fit into a picture of galaxy formation is not
absolutely certain, but it appears that they correspond to lines of sight passing
through gas confined in the small-scale ‘cosmic web’ of filaments and voids that
corresponds to an earlier stage of the clustering hierarchy than is visible in the
local galaxy distribution.

20.3.4 X-ray gas in clusters

We should mention here that there is direct evidence from X-ray observations of
hot gas at T � 108 K in the IGM in rich clusters of galaxies. We mentioned in
Chapter 17 that this gas could cause an observable Sunyaev–Zel’dovich distortion
of the CMB temperature in the line of sight of the cluster. Direct observations
of the gas show that it also has quite high metal abundances and its total mass
is of order that contained in the cluster galaxies. Since the cooling time of the
gas at these temperatures is comparable with the Hubble time, one expects to
see cooling flows as the gas dissipates and falls into the potential well of the
cluster (a cooling flow occurs whenever the rate of radiative cooling is quicker
than the cosmological expansion rate, H). It seems likely, however, that much of
the cluster gas is actually stripped from the cluster galaxies, so these observations
say nothing about the properties of the primordial IGM.
We discuss the properties of the diffuse extragalactic X-ray background and its

implications in Section 20.4.

20.3.5 Spectral distortions of the CMB

The Sunyaev–Zel’dovich effect also allows one to place constraints on the prop-
erties of the intergalactic medium. If the hot gas is smoothly distributed, then
one would not expect to see any angular variation in the temperature of the CMB
radiation as a result of this phenomenon. However, the Sunyaev–Zel’dovich effect
is frequency dependent: the dip associated with clusters appears in the Rayleigh–
Jeans region of the CMB spectrum. If one measures this spectrum one would
expect a smooth gas distribution to produce a distortion of the black-body shape
due to scattering as the CMB photons traverse the IGM. The same will happen if
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gas is distributed in objects at high redshift which are too distant to be resolved.
We mentioned this effect in Section 9.5 and defined the relevant parameter, the
so-called y-parameter, in Equation (9.5.5). The importance of this effect has been
emphasised by the CMB spectrum observed by the FIRAS experiment on COBE,
which has imposed the constraint y < 3× 10−5.
From Equation (9.5.5) the contribution to y from a plasma with mean pressure

nekBTe at a redshift z is

y � σTnect kBTemec2
, (20.3.11)

where the suffix e refers to the electrons. Various kinds of object containing hot
gas could, in principle, contribute significantly to y . If Lyman-α clouds are in
pressure balance at z � 3, then they will contribute only a small fraction of the
observational limit on y , so these clouds are unlikely to have an effect on the CMB
spectrum. Similarly, if galaxies form at high redshifts with circular velocities v ,
then one can write

y � σTnect
(
v
c

)2
, (20.3.12)

which is of order

y � 10−8hΩgΩ−1/2(1+ z)3/2 (20.3.13)

if v � 100 km s−1 and Ωg is the fractional contribution of hot gas to the critical
density. The contribution from rich clusters is similarly small, because the gas in
these objects only contributes around Ωg � 0.003. On the other hand, a smooth
hot IGM can have a significant effect on y , as we shall see shortly.

20.3.6 The X-ray background

It has been known for some time that there exists a smooth background of X-
ray emission. This background actually furnishes an additional argument for the
large-scale homogeneity of the Universe because the flux is isotropic on the sky
to a level around 10−3 in the wavelength region from 2 to 20 keV.
It has been a mystery for some time precisely what is responsible for this back-

ground but many classes of object can, in principle, contribute. Clusters of galax-
ies, quasars and active galaxies at high redshift and even starburst galaxies at
relatively low redshift could be significant contributors to it. Disentangling these
components is difficult because it may be difficult to locate any counterpart of
an X-ray-emitting source in any other waveband. Recently, however, using the
sensitive instruments on Chandra, Mushotzky et al . (2000) have resolved about
three-quarters of the hard X-ray background into sources. The mean X-ray spec-
trum of these sources is in good agreement with that of the background. The
X-ray emission from the majority of the detected sources is unambiguously asso-
ciated with either the nuclei of otherwise normal bright galaxies or optically faint
sources, which could either be active nuclei of dust-enshrouded galaxies or the
first quasars at very high redshifts.
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The spectrum and anisotropy may well provide strong constraints on models
for the origin of quasars and other high-redshift objects. We shall concentrate
on the constraints this background imposes on the IGM. A hot plasma produces
radiation through thermal bremsstrahlung. The luminosity density at a frequency
ν produced by this process for a pure hydrogen plasma is given approximately
by

J(ν) = 5.4× 10−39n2eT−1/2
e exp(−hν/kBTe) erg cm−3 s−1 ster−1 Hz−1, (20.3.14)

so the integrated background observed now at a frequency ν is

I(ν) =
∫
cJ(νa0/a, t)(a/a0)3 dt, (20.3.15)

where the integral is taken over a line of sight through themedium. If the emission
takes place predominantly at a redshift z, then

I(ν) = 4× 10−23
(
Te

104 K

)−1/2h3ΩIGM

Ω1/2 (1+ z)3/2 erg cm−2 s−1 ster−1 Hz−1

(20.3.16)

for hν  kBTe. The present surface brightness of the X-ray background is

I(ν) � 3× 10−26 erg cm−3 s−1 ster−1 Hz−1 (20.3.17)

at energies around 3 keV. Suppose a fraction f of this is produced by a hot IGM
with temperature T � 108(1+ z) K; in this case,

ΩIGM � 0.3fΩ1/4h−3/2
(
T

108 K

)1/4
(1+ z)−1/2, (20.3.18)

so that, if the plasma is smooth, the y-parameter is

y � 2× 10−4(1+ z)2
(

f
hΩ1/2

)1/2
. (20.3.19)

If the plasma is hot and dense enough to contribute a significant part of the X-ray
background, then it would violate the constraints on y .

20.4 The Infrared Background and Dust

We have already discussed the importance of the CMB radiation as a probe of cos-
mological models. Two other backgrounds of extragalactic radiation are impor-
tant for the clues they provide about the evolution of gas and structure after
recombination.
It has been suggested that various kinds of cosmological sources might also

generate a significant background in the infrared (IR) or submillimetre parts of
the spectrum, near CMB frequencies. A cosmological IR background is very diffi-
cult to detect even in principle because of the many local sources of radiation at
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these frequencies. Nevertheless, the current upper limits on flux in various wave-
length regions can place strong constraints on possible populations of pregalactic
objects. For simplicity one can characterise these sources by the contribution their
radiation would make towards the critical density:

ΩR(λ) = 4πνI(ν)
c3ρc

, (20.4.1)

where I(ν) is the flux density per unit frequency. The CMB has a peak energy
density at λmax = 1400 µm, corresponding to ΩCMB � 1.8 × 10−5h−2. The lack
of distortions of the CMB spectrum reported by the FIRAS experiment on COBE
suggests that an excess background with 500 µm < λ < 5000 µm can have a
density less than 0.03% of the peak CMB value:

ΩR(λ) < 6× 10−9h2
(
λ
λmax

)−1
. (20.4.2)

One obvious potential source of IR background radiation is galaxies. To estimate
this contribution is rather difficult and requires complicated modelling. The near-
IR background would be generated by redshifted optical emission from normal
galaxies. One therefore needs to start with the spectrum of emission as a func-
tion of time for a single galaxy, which requires knowledge of the initial mass
function of stars, the star-formation rate and the laws of stellar evolution. To
get the total background one needs to integrate over a population of different
types of galaxies as a function of redshift, taking into account the effect of the
density parameter upon the expansion rate. If galaxies are extremely dusty, then
radiation from them will appear in the far-IR region. Such radiation can emanate
from dusty discs, clouds (perhaps associated with the ‘starburst’ phenomenon),
active galaxies and quasars. The evolution of these phenomena is very complex
and poorly understood at present.
More interesting are the possible pregalactic sources of IR radiation. Most of

these sources produce an approximate black-body spectrum, because the low den-
sity of neutral hydrogen in the IGM is insufficient to absorb photons with wave-
lengths shorter than the Lyman cut-off. For example, the cooling of gas clouds at
a redshift z after they have collapsed and virialised would produce

ΩR � 2× 10−7
(
Ωclouds

0.1

)(
1+ z
5

)−1( v
300 km s−1

)2
(20.4.3)

at a peak wavelength

λmax � 0.1
(
1+ z
5

)−1( v
300 km s−1

)−2
µm, (20.4.4)

where v is the RMS velocity of gas in the clouds. In principle, this could therefore
place a constraint upon theories of galaxy formation, but the number of objects
forming as a function of redshift is difficult to compute in all but the simplest
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hierarchical clustering scenarios. Pregalactic explosions, often suggested as an
alternative to the standard theories of galaxy formation, would produce a much
larger background. COBE limits on the spectral distortions (20.4.2) appear to rule
out this model quite comfortably. Constraints can also be placed on the numbers
of galactic halo black holes, halo brown dwarfs and upon the possibility of a
decaying particle ionising the background radiation.
The constraints obtained from this type of study only apply if the radiation from

the source propagates freely without absorption or scattering to the observer.
Many sources of radiation observed at the present epoch in the IR or submil-
limetre regions are, however, initially produced in the optical or ultraviolet and
redshifted by the cosmological expansion. The radiation may therefore have been
reprocessed if there was any dust in the vicinity of the source. Dust grains are
generally associated with star formation and may consequently be confined to
galaxies or, if there was a cosmological population of pregalactic stars, could
be smoothly distributed throughout space. The cross-section for spherical dust
grains to absorb photons of wavelength λ is of the form

σd = πr 2d
1+ (λ/rd)α , (20.4.5)

where rd is the grain radius and α � 1 is a suitable parameter; the cross-section is
simply geometrical for small λ but falls as a power law for λ� rd. If radiation is
absorbed by dust (whether galactic or pregalactic), then thermal balance implies
that the dust temperature Td obeys the relation

Td(z) = TCMB(z)
[
1+

(
ΩR

ΩCMB

)(
rd

0.1 µm

)−1(1+ z
104

)−1]1/5
. (20.4.6)

If the radiation density parameter is less than the critical quantity

Ω∗ � 2× 10−7h−2
(

rd
0.1 µm

)(
1+ z
100

)
, (20.4.7)

then the dust temperature will be the same as the CMB temperature at redshift
z. On the other hand, if ΩR > Ω∗, the dust will be hotter than the CMB and one
will expect a far-IR or submillimetre radiation background with a spectrum that
peaks at

λmax � 700h−2/5
(
ΩR

10−6

)−1/5( rd
0.1 µm

)1/5(1+ z
10

)1/5
µm. (20.4.8)

Notice the very weak dependence on the various parameters, indicating that the
peak wavelength is a very robust prediction of these models. This was interesting
a few years ago because a rocket experiment by the Nagoya–Berkeley collabora-
tion had claimed a detection of an excess in the CMB spectrum in this wavelength
region. Unfortunately, we now know this claim was incorrect and that the experi-
ment had detected hot exhaust fumes from the parent rocket.
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Note that if ΩR > Ω∗, the total spectrum has three parts: the CMB itself, which
peaks at 1400 µm; the dust component, peaking at λmax; and a residual compo-
nent from the sources. If ΩR < Ω∗, the dust and CMB parts peak at the same
wavelength, so there are only two components. Nevertheless, the dust compo-
nent is not a pure black body, so there is some distortion of the CMB spectrum in
this case.
We should also mention that a dust background would also be expected to be

anisotropic on the sky if it were produced by galaxies or a clumpy distribution
of pregalactic dust. One can study the predicted anisotropy in this situation by
allowing the dust to cluster like galaxies, for example, and computing the resulting
statistical fluctuations. Various experiments have been devised, along the lines of
the CMB anisotropy experiments, to detect such fluctuations, with success finally
resulting from an analysis of data from the DIRBE measurement on COBE (Wright
and Reese 2000). We shall return to this background, and its theoretical impor-
tance, shortly.

20.5 Number-counts Revisited

We discussed in Section 1.8 how the number–magnitude and the number–redshift
relationships, in the past thought to be good ways to probe the geometry of the
Universe, are complicated by the fact that galaxies appear to be evolving on a
timescale which is less than or of order the Hubble time; an example is Figure 4.11.
While evolution makes it very difficult to obtain the deceleration parameter q0
from these counts, there is at least the possibility that they can tell us something
about how galaxy formation, or at least star formation in galaxies, changes at
relatively low redshifts. This, in turn, can yield useful constraints on theories of
the origin of structures.
Again, this is an area in which considerable observational advances have been

made in recent years. The possibility of obtaining images of extremely faint galax-
ies using CCD detectors has made it possible to accumulate number-counts of
galaxies in a systematic way down to the 28th magnitude in blue light (so-called
B-magnitudes). In parallel with this, developments in infrared technology have
allowed observers to obtain similar counts of galaxies in other regions of the
spectrum, particularly in the K-band. Since these different wavelength regions
are sensitive to different types of stellar emission, one can gain important clues
from them about how the stellar populations have evolved with redshift. Blue
number-counts tend to pick up massive young stars and therefore are sensitive
to star formation; longer wavelengths are more sensitive to older stars.
The blue number-counts display a feature at faint magnitudes corresponding to

an excess of low-luminosity blue objects compared with what one would expect
from straightforward extrapolation of the counts of brighter galaxies. The game
is to try to fit these counts using models for the evolution of the stellar content
and (comoving) number density of galaxies, as well as the deceleration parame-
ter. The best-fitting model appears to be a low-density-universe model with sig-
nificant luminosity evolution, i.e. the sources maintain a fixed comoving number
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density but their luminosities change with time. An independent test of this kind
of analysis is afforded by the N–z or M–z relationship for the same galaxies. If
pure luminosity evolution explains the excess counts, then one expects a signifi-
cant number of the faint objects to be at very high redshifts. This actually seems
not to be the case: the majority of these sources are at redshifts z < 0.5. One
ought to admit, however, that the redshift distribution at very faint magnitudes
is not well known. This issue is still quite controversial, but it may be that one
is seeing a population of dwarf galaxies undergoing some kind of burst of star-
formation activity at intermediate redshifts. This is some evidence that galaxies
may be forming a significant part of their stars at low redshift, but the sources
observedmay be localised star formation within amuch bigger object. Perhaps the
apparent starburst could be induced in a similar way to that usually considered
likely for the true ‘starburst’ galaxies mentioned in Chapter 4; they are somehow
induced by mergers.
Number-counts in the infrared K-band appear to be quite different to that of

the blue counts shown in Chapter 4. In particular there is an apparent deficit of
galaxies at faint magnitudes, compared with a straightforward extrapolation of
the bright counts. An examination of the colours (B–K) of the galaxies suggests
that the same population of galaxies is being sampled here as in the blue counts,
but that the colours are evolving strongly with redshift.
One possible reconciliation of the blue and infrared counts is that merg-

ers of galaxies have been important in the recent past. Perhaps the faint blue
dwarfs merge into massive galaxies by the present epoch. The amount of merging
required to achieve this is rather large, but perhaps compatible with that expected
in hierarchical models of structure formation. At any rate it seems clear that at
least a subset of galaxies have enjoyed a period of star formation, perhaps asso-
ciated with the formation of a disc. Since the amount of metals produced by the
known blue luminosity is comparable with that found in spiral discs, it may be
that these objects are somehow related to the damped Lyman-α systems dis-
cussed above. Perhaps massive protodiscs, which do not undergo a burst of star
formation at such low redshifts and thus appear in the blue population, survive
to the present epoch as large galaxies with an extremely low surface brightness.
Examples of such systems have been found, but would generally not be included
in the normal galaxy surveys. These considerations might reconcile the appar-
ent excess of high-column-density Lyman-α systems at z � 2 compared with the
number of normal spiral discs at the present epoch.

20.6 Star and Galaxy Formation

The partial and incomplete data we have about galaxies and the IGM at high red-
shift obviouslymake it difficult to say for certain at what redshift galaxy formation
can have occurred. Obviously, it is unlikely that there is a definite redshift, zg, at
which galaxy formation occurred, particularly in hierarchical theories where struc-
ture forms on different scales continuously over a relatively long interval of time.
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In fact, there is also considerable confusion about what galaxy formation actu-
ally is, and how one should define its epoch. Since galaxies are observed mainly
by the starlight they emit, one might define their formation to be when most of
the stellar population of the galaxy is formed. Alternatively, since galaxies are
assumed to be formed by gravitational instability, one might define formation to
have occurred when most of the mass of a galaxy has been organised into a bound
object. There is no necessary connection between these two definitions. A galaxy
may well have formed as a gas-rich system very early in the Universe, but suffered
an intense period of star formation very recently. We shall therefore consider star
formation and mass-concentration epochs separately and try to interpret various
observations in terms of the epochs at which these can have happened.
Since we know most about the bright central parts of galaxies, say the part

within rc � 10h−1 kpc, it makes sense to define the epoch of galaxy formation
in the second sense as the redshift by which, say, the mass within this radius
reached half of its present value. This will be different for different galaxies, so
one picks as a representative epoch the median redshift, zg, at which this occurs.
Spiral galaxies have prominent discs, so one could also usefully define zd to be the
median redshift at which half the mass of a present-day disc had been accumu-
lated. According to most cosmogonical theories, the spiral disc is not the dom-
inant mass within rc, and the formation of a disc may well take place over an
extended period of time. Studies of the dynamics of galaxies suggest that stars
contribute a significant fraction of the mass within rc. Accordingly we define z∗ to
be the median redshift at which half the stellar content (in long-lived stars of rel-
atively low mass) of a bright galaxy has formed within rc. We may similarly define
zm to be the redshift at which half the present content of metals, i.e. elements
heavier than helium, was formed. In the standard picture, the initial gas content
of a protogalaxy would have a chemical composition close to the primordial abun-
dances and therefore a negligible fraction of metals. These would have to be made
in stars as the galaxy evolves. Because most stars within rc are relatively metal
rich and most metals are in stars, it seems likely that zm > z∗.
As we have already explained, we cannot give firm model-dependent values

for any of the characteristic redshifts zg, zd, z∗ or zm. But can we at least place
constraints on them, put them in some kind of order or, better still, obtain approx-
imate values? This is what we shall try to do in this section. Although there has
been a rapid growth of pertinent observational data, we will find that conclusions
are not particularly strong. Notice also that zg is the epoch which is in principle
most closely related to the theoretical models of structure formation by gravi-
tational instability. Unfortunately, it is also probably the furthest removed from
observations. Nevertheless, we shall begin with some constraints on zg.
The most obvious constraint comes from the fact that galaxies, once fully devel-

oped, have a relatively well-defined physical size. Galaxies, as we know them, could
therefore only have formed after the time at which the volume they now fill occu-
pied all of space. Depending on how one counts them, bright galaxies (which we
shall restrict all these considerations to) have a mean separation of 4h−1 Mpc.
The diameter of the bright central parts is 2rc � 20h−1 kpc. This suggests an
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upper limit on zg of order 200, but this is decreased by the factor C by which a
protogalaxy collapses. We therefore have

zg < 200/C. (20.6.1)

It is also the case that galaxies could not have existed when the mean cosmolog-
ical density was greater than the density inside the galaxy. Suppose a galaxy has
circular velocity vc at the present epoch. An estimate of the mean density of its
progenitor at maximum expansion is then

ρm � rcv
2
c

G
3

4πr 3c
1
C3
. (20.6.2)

According to the spherical collapse model (Section 15.1), this should be given by

ρm � 9
16π

2Ωρc(1+ zg)3, (20.6.3)

where we have taken zg to be approximately the turnaround redshift. If vc �
250 km s−1, then

zg � 30
Ω1/3C

, (20.6.4)

which is consistent with Equation (20.6.1).
The problem with these estimates is that we do not really know how to esti-

mate the collapse factor C accurately. The simple theory in Section 14.1 suggests
C = 2, corresponding to dissipationless collapse, but as we already discussed in
Section 15.7, this is probably not accurate. If galaxies formed hierarchically, the
continuity of clustering properties has led some to argue against a large collapse
factor, so that C < 3 or so. On the other hand, if our discussion of the origin of
angular momentum in Section 15.9 is taken seriously, one seems to require a rel-
atively large collapse factor for spiral galaxies to generate a large enough value of
the dimensionless angular momentum parameter λ, while the appropriate factor
for ellipticals should be of order unity. In ‘top-down’ scenarios or in the explosion
picture the factor is difficult to constrain.
Now let us turn to z∗. The most obvious constraint on this comes from the

fact that the evolutionary timescale for reasonably massive stars is of order 107–
108 years. Since heavy elements need several generations of massive stars, a rea-
sonably conservative bound on tm, the time when ρ = ρm, is

tm = 2
3Ω

−1/2(1+ zm)−3/2 > 108 years. (20.6.5)

In terms of redshift, this gives

zm < 20h−2/3Ω−1/3, (20.6.6)

and, according to the argument given above, we can also conclude that z∗ < zm.
At very high redshifts, z > 103 or so, the temperature is enough to ionise hydro-

gen and radiation drag ensures that clouds of plasma expand with the radiation
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background. Although this drag effect decreases after z � 103 when recombina-
tion occurs, any material ionised by stars will still suffer from it; this will prevent
any further star formation. After z � 102 this can no longer occur. This suggests
an upper limit of z � 102 on z∗ and probably also on zg, since star formation is
presumably required to halt collapse.
As we mentioned in Section 14.7, the behaviour of a gas cloud is determined

by the rate of radiative cooling if Compton scattering off the CMB radiation is
negligible, i.e. when z < 10. If galaxy formation proceeds hierarchically, the lower
mass end of the distribution will cool slowly since the material in such objects will
have a relatively low temperature. Higher-mass objects, corresponding to temper-
atures around 104 K and above, will cool rapidly and collisional ionisation will be
important; star formation presumably ensues. The mass scale when this becomes
important is easily calculated to be around 1010–1012M�, in good accord with the
typical mass scale of bright galaxies. This agreement would not exist if Comp-
ton cooling were important during galaxy formation and this therefore provides
a certain amount of motivation for the requirement that zg and z∗ are both less
than 10.
These theoretical comments on z∗ are disappointingly vague because our

understanding of star formation is poor, even for nearby objects. However, once
again observations have led the way and a clutch of different programmes have
resulted in estimates of star-formation rates from observed colours and synthetic
stellar populations; a prominent example of this kind of study is described in
Madau et al . (1996) using observations of the Hubble Deep Field shown in Fig-
ure 4.10. The plot shown as Figure 20.2 is generically known as a ‘Madau Plot’. It
appears that these observations favour a scenario in which star formation peaks at
moderate redshift. The theoretical curve shown in Figure 20.2 also shows that, in a
broad-brush sense, this behaviour can be accounted for in hierarchical clustering
models (Baugh et al . 1998). It is also noteworthy that the integrated star formation
that these observations imply is not observed. The infrared background measure-
ments mentioned above perhaps explain why: about half the optical starlight ever
produced in the Universe has probably been absorbed by dust and re-radiated in
the infrared part of the spectrum.
Although the vaguer arguments we gave above admit the possibility that galaxy

formation could occur relatively early, at redshifts up to around 10, in hierarchical
models galaxies are expected to form at redshifts much lower than this: zg � 1.
The reason for this is that the clustering pattern of galaxies, as measured by the
two-point correlation function, evolves very rapidly with time in models based
on the Einstein–de Sitter universe. If galaxies formed at redshifts zg � 10, one
would expect drastic steepening of the correlation function between z = 10 and
z = 0, which is incompatible with the observed slope. This problem, though rather
difficult to quantify, does seem compelling in dark-matter models where light
traces mass.
Various other kinds of observations are capable of probing the Universe up to

the redshift of quasar formation, so it is interesting to see if these can yield any
clues about zg or z∗.
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Figure 20.2 The star-formation history of the Universe. Estimates of the star-formation
rate as a function of redshift, along with the predictions of a semi-analytic model of galaxy
formation described in Chapter 14. Picture courtesy of Carlton Baugh (Baugh et al . 1998).

First there is the question of whether some galaxies may have formed at z < 1.
The number-counts, discussed in Section 20.5, certainly show evidence of strong
evolution in galaxy properties at these redshifts. How the faint blue galaxies fit
into this picture is still an open question: are they connected with the epoch of
galaxy formation, or are they merely a sideshow? There is also the problem posed
by the population of starburst galaxies, which, though usually dwarf galaxies, are
forming stars at a prodigious rate at the present epoch. It has yet to be estab-
lished, however, if these sources are really young in the semi-quantitative sense
defined above. They could merely have evolved more slowly, as a consequence of
their cooling properties. If they are young, however, then they certainly suggest
the possibility that larger galaxies may also have formed recently. A more direct
argument is based on the relative age of the disc and central spheroid of the Milky
Way, as estimated by stellar evolution arguments. If the disc turns out to be half
the age of the spheroid, one has zd < 1 regardless of the value of zg. It appears
that there are disc stars as old as 12 Gyr, which might therefore be a reasonable
estimate of td. In an Ω0 = 1 Universe we therefore have

1+ zd �
(

t0
t0 − td

)2/3
, (20.6.7)

so that zd � 2 if t0 � 15 Gyr.
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At redshifts of order unity and above, galaxies are still reasonably observable
and one can attempt therefore to study their stellar populations to see how much
evolution there has been between z � 1 and the present. There are some notable
differences between galaxies then and now: in the past, galaxies were luminous
and had younger-looking stellar populations, they were richer in gas and there
was also more merging. These differences are, however, not extreme. The giant
radio galaxies mentioned in Section 20.2 do seem brighter than would be expected
without evolution, but they are only about one magnitude brighter at z � 1 than
at redshifts much lower than this. This is consistent with relatively slow evolution
from a much higher redshift of formation. Many features of ‘normal’ galaxies at
z � 1 seem to be characteristic of relatively old stellar populations and there
is little evidence for significant evolution in the (comoving) number density of
such objects with time. This suggests that both zg and z∗ are rather greater than
unity.
The redshift at which galaxies can be observed in large numbers was pushed

back further by Steidel et al . (1996), who implemented a novel technique for
targetting galaxies at high redshift. By choosing appropriate filters they were
able to select objects using colours in such a way that preferentially picked
out objects in which the ionisation limit of the Lyman series (in the UV part
of the spectrum of a galaxy in its rest frame) is redshifted into an opti-
cal band. This allows the observer to pick a small subset of galaxies with
extreme colours for follow-up spectroscopy. The galaxies thus found tend to
have redshifts z ∼ 3. This has been a remarkably successful approach, but
the most interesting thing is that the galaxies found seem to have roughly the
same number-density as present-day bright spirals and have similar clustering
properties.
Observations at higher redshift are much more difficult and have only become

feasible in the last five years or so. We have discussed some of these observa-
tions already in Sections 20.2–20.4, so let us now discuss them in the context of
structure formation.
First, the damped Lyman-α absorbers discussed in Section 20.2 are usually

interpreted as the progenitors of galactic discs. Certainly the mean mass den-
sity seems to be of the correct order, but they do seem to be more abundant than
one would expect by extrapolating the properties of present-day discs back to
redshifts of order 3. If they are not protodiscs, then presumably zd is relatively
low, which again poses problems.
Secondly, as discussed in Section 20.2, there have been a number of indica-

tions of relatively old-looking galaxies at high redshifts, z > 3. The stellar ages
of these objects are difficult to determine because of the redshifting of the opti-
cal and UV spectra into the infrared region. None of the objects so far claimed
to have been seen has been unambiguously identified as a fully formed galaxy,
but if one such object is ever found it will place very important constraints on
z∗.
The highest-redshift objects known to observational astronomy are the quasars.

Again the evolution of the number density of these objects with time is diffi-
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cult to quantify, but it seems relatively constant (at least for the brightest ones)
from z � 2 up to z � 4. This suggests that zg > 4, if quasars are housed in
galaxies.
Finally, the highest-redshift quasars show that the IGM (Section 20.3) was

ionised by z � 4. The consequences of this for zg or z∗ are also unclear. One
might be led to conclude that zg > 4 on the grounds that galactic stars must have
ionised the IGM. On the other hand, a separate population of very massive stars
might have formed before galaxies and caused this ionisation.
These arguments are clearly all compatible with z∗ � 4 and zg > 4 but do

not rule out more recent epochs. We shall have to wait for further observational
breakthroughs before anything more concrete can be said. This is indeed an area
where a tremendous observational effort is being directed, and one can expect
much to be learned in the next few years.

20.7 Concluding Remarks

In this chapter we have discussed the evolution of the Universe between trec and
the present epoch. Clearly, many questions remain unanswered but we hope we
have conveyed to the reader some idea of the intense activity and progress which
is taking place in this field. This chapter and the previous three have been aimed
at a somewhat more detailed level than the earlier chapters in order to provide a
‘bridge’ between the fundamentals, covered in Parts 1–3, and some of the areas
of particular current research interest. These chapters should make it clear that
we still have a long way to go before we can claim to have a complete under-
standing of the origin and evolution of cosmic structures, but we are making
considerable progress both theoretically and observationally. The basic idea that
structures form by gravitational instability from small-initial-density perturba-
tions seems to account, at least qualitatively, for most of the observational data
we have. Whether this will still be the case when more data are acquired remains
to be seen. There is a very good chance that the cosmological parameters H0 and
Ω will be pinned down in the next few years or so. This will also make it easier
to construct rigorous tests of these theories. In any event, one thing we can be
sure of is that the question of the origin of galaxies and the large-scale structure
of the Universe will remain the central problem in cosmology for many years to
come.

Bibliographic Notes on Chapter 20

Peebles (1993) contains excellent accounts of the astrophysics of the intergalac-
tic medium. A good review of the properties of Lyman-α absorption systems is
given in Wolfe (1993); for some theoretical ideas see Rees (1986). The cosmic X-ray
background was reviewed by Boldt (1987). For detailed discussion of the infrared
background see Bond et al . (1986) and Carr (1994); see also Signore and Dupraz
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(1992). The problem of the faint blue galaxies is discussed by Ellis (1993); inter-
pretation of the faint counts in hierarchical models is attempted by Kauffmann et
al . (1994). Some of this chapter is based on an entertaining discussion described
in Frenk et al . (1989).

Problems

1. A population of sources in a flat matter-dominated (Einstein–de Sitter) universe
has a number-density n0 at the present epoch and a monochromatic luminosity
P(ν)∝ ν−α at frequency ν . Show that the flux density S(ν0) observed at the present
epoch from a source at redshift z satisfies

S(ν0) = P(ν0)(1+ z)1−αD−2
L ,

where DL is the luminosity distance.

2. Following on from Question 1, if sources are neither created nor destroyed as the
universe expands, show that the number of sources observed per steradian with
redshift < z is

N(z) = 8
3n0

(
c
H0

)3[
1− 1√

1+ z
]3
.

3. Following on from Question 2, show that the integrated background light intensity
at frequency ν0 from this population of sources is

I(ν0) = 2cn0P(ν0)
H0(2α+ 3)

.
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A Forward Look

21.1 Introduction

From our vantage point at the beginning of the 21st century, we can look back on
a hundred years of truly amazing progress in the development of astronomical
techniques and technology. Ground-based optical observatories, such as the Keck
telescopes and the VLT, offer collecting areas many times larger than their prede-
cessors at Mt Wilson and Mt Palomar, and are equipped with much more sophis-
ticated instrumentation. Perhaps the most important developments, however,
have been in the introduction to astronomy of entirely new wavelength regimes.
Radio astronomy only came into being after World War II, and X-ray astronomy
only in the 1960s with the development of space missions. Some regions of the
spectrum, such as the submillimetre region, are still relatively unexplored, but
here too progress has been dramatic over the past decade or so.
There are also potentially important phenomena that have not yet emerged as

practical possibilities for observation. A prominent example related to cosmology
is neutrino astronomy; direct detection of the low-energy neutrino background
discussed in Chapter 8 would furnish an important test of the Big Bang. This is
as yet a remote possibility. More likely to be feasible in the very near future is the
detection of gravitational waves, which we discuss briefly in Section 21.10.
Faced with this continuing revolution driven largely by advances in instrumen-

tation and manufacturing techniques, it seems almost to be inviting ridicule to
suggest that the future might be anything like as exciting as the past. But a glance
at some of the planned projects and space missions to come over the next two
decades suggests that this is indeed very likely to be the case. What is different
about the future is that, in contrast to the dawn of the 20th century, we now have
a robust theoretical framework within which we can interpret observations and
plan future strategies. The bulk of this book has been devoted to this framework.
We are not saying that the emerging consensus model of the Universe is exact

in every detail, nor that we are anywhere near a complete understanding of the
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formation and evolution of cosmic structure. But we do have a much better idea
of where the interesting questions lie, and how seemingly disparate pieces of the
cosmic jigsaw may be related to each other than was the case even a few years
ago.

21.2 General Observations

Before discussing the future of observational cosmology, it is worth taking stock
of the present status of this area. Until relatively recently, extragalactic astronomy
would have been described in terms of a large number of relatively distinct niches,
including, for example,

• cosmography (i.e. surveys);

• distance scale studies (i.e. measurement of H0);

• the classical cosmological tests (number-counts, angular-diameter and mag-
nitude redshift tests, etc.);

• gravitational lensing (multiple images, arcs and weak lensing);

• studies of galaxy clusters;

• detailed studies of galaxy morphology, stellar populations and kinematics;

• galaxy formation and evolution;

• extragalactic radiation backgrounds (infrared and X-ray);

• active galaxies, AGN, quasars and radio galaxies;

• the intergalactic medium, absorption line studies and the like; and

• element abundances and chemical evolution.

Over the last two decades the overlaps between these areas have become blurred
owing to the development of a fairly robust theoretical framework that enables
a broad-brush theoretical description of the formation of individual structures
such as galaxies and quasars within an overarching cosmological framework.
This framework still has a number of uncertain constituents, but basically

involves the hypothesis of a dominant component of collisionless dark matter
into which density fluctuations are imprinted in the early Universe. These fluctu-
ations grow until small clumps of dark matter collapse, and begin to merge hier-
archically into larger structures. The evolution of the structure thus formed has
two particular aspects. One is the formation of cool matter, essentially meaning
the cooling of baryonic material at high redshift, its incorporation in dark-matter
clumps, the fragmentation of gas, the formation of stars and the accompanying
generation of dust and complex chemistry. This part of the story can be diagnosed
by optical, infrared and submillimetre studies. On the other hand, there is also the
hot universe involving the formation of very massive black holes and accompany-
ing accretion processes, and the hot intergalactic and intracluster media. The hot
universe is typically probed using X-ray studies. Although we have emphasised
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the coming together of different types of study in recent times, it is still fair to
say that the relationship between galaxy formation and nuclear activity and the
role of the central black holes in the galaxy-formation process remains poorly
understood.
Theoretical developments, including the application of supercomputer simula-

tions, have helped target observational strategies as well as elucidating the pos-
sible links between galaxy formation and internal kinematics, and between large-
scale structure and galaxy morphology. On the observational side, huge ongoing
redshift surveys are mapping the positions of hundreds of thousands of galaxies
in representative cosmological volumes. At the other extreme, the development of
integral field units, such as SAURON, are displaying unprecedented detail about
the internal structure of nearby galaxies. A consensusmay also be emerging about
the parameters of a cosmological model that describes the evolution of the bulk
properties of the Universe, based principally upon the cosmic microwave back-
ground and Type Ia supernova searches.
So what are the future directions for observational studies in this area? Some

goals are obvious: higher sensitivity, higher angular resolution and higher spec-
troscopic resolution at existing wavelength ranges will allow more detail to be
gleaned and fainter objects to be studied. On the other hand, fields such as weak
gravitational lensing lead one to develop wider-field instruments. The desire to
probe evolution by moving to extremely high redshift motivates a shift to longer
wavelength, as does the desire to avoid excessive extinction of stellar light by
dust. On the other hand, the wish to unveil more of the hot universe suggests
moving to shorter wavelengths and higher-energy X-rays.
In the following sections we will quickly survey a few of the upcoming devel-

opments across the electromagnetic spectrum, starting with the hot universe and
X-rays.

21.3 X-rays and the Hot Universe

The current scene in extragalactic X-ray astronomy is dominated by two space
missions: Chandra (the telescope formerly known as AXAF) and XMM/Newton. Of
the two, Chandra produces the sexiest pictures because it has a high-resolution
camera capable of resolving sub-arcsecond detail, while the angular resolution
of XMM is only around 5 arcsec. Chandra also has a higher sensitivity. The two
missions are nevertheless complementary because XMM/Newton is more suitable
for survey work than Chandra. They also have different instrumentation. Both
work in the range 0.1 keV to around 10 keV.
The particular difficulties of X-ray astronomy are illustrated nicely by these two

satellites. The most important aspect of X-ray-telescope design is that the mirrors
work at grazing incidence and one is therefore more or less forced to have a very
long focal length in order to obtain any reasonable angular resolution. Chandra
has four pairs of mirrors and a focal length of about 9 m; XMM/Newton has three
sets of nested mirrors and a focal length of about 7.5 m. These require very large
platforms in order to operate in space, with consequent implications for expense.
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The difficulties associated with X-ray imaging will not be overcome easily. For
the time being, the next major developments in this area will be space missions
devoted to higher-throughput spectroscopy. Although these missions will have
significant gains in sensitivity, these are somewhat incremental and are obtained
at an enormous financial cost.
For example, consider the planned ESA mission XEUS. Among the performance

goals required of XEUS are the following.

1. Spectral capability at flux levels less than 10−17 erg cm−2 s−1. This is a factor
∼ 100 fainter than the XMM/Newton limit and about a factor 10 fainter than
Chandra.

2. Deep surveys to a flux limit of 10−16 erg cm−2 s−1. Typical redshift limits
for extragalactic sources would be in the range z ∼ 10–15.

3. Angular resolution (at 1 keV) of better than about 5 arcsec is required to
avoid source confusion at these levels.

4. Energy resolution of 1–10 eV is required to undertake detailed spectroscopic
studies of redshifted line profiles.

XEUS beats the focal-length problemby beingmade from two spacecraft, called the
MSC (which contains the mirrors) and the DSC (which holds the detectors). These
are held in station about 50 m apart producing a telescope about five times longer
than Chandra. (This idea is taken further by the NASA mission Constellation-X,
which is a flotilla of spacecraft rather than two.) XEUS will enable much more
detailed spectroscopy of fainter objects than is presently possible. Its imaging
capability will, however, still be restricted with a resolution at 1 keV of about
2 arcsec.
It will be a very long time before X-ray imaging can match the standards of

optical telescopes, but when it does the results promise to be spectacular. For
example, a NASA proposal called MAXIM (MicroArcsecond X-ray Imaging Mission)
introduces the concept of interferometry to the X-ray region of the spectrum.
With a planned baseline of only 1.4 m it should achieve angular resolution of
about 100 µarcsec, about a factor 5000 better than Chandra. (This resolution will
be enough to resolve the event horizon of the black hole at the centre of M87.) The
major obstacle is that the two vehicles making up MAXIM – it is similar to XEUS in
this regard – must be held in station by telemetry to this accuracy although sepa-
rated by a staggering 500 km. If this can be achieved, it may be possible eventually
to obtain resolution measured in hundreds of nanoarcseconds by interferometry.

21.4 The Apotheosis of Astrometry: GAIA

We could not resist the opportunity presented by this invitation to say a few
words about GAIA. This mission is a direct descendent of the highly success-
ful ESA astrometry mission Hipparcos, which measured accurate parallaxes and
proper motions for stars inside our Galaxy. GAIA’s principal aim is to make an
accurate three-dimensional map of more than a billion stars in the Milky Way,
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including detailed photometric studies to characterise luminosities, temperatures
and chemical compositions for these stars. GAIA will work by continually scan-
ning the whole sky and repeatedly measuring the positions of all objects it detects
down to a limiting V magnitude of 20. Positions will be measured to an astonish-
ing 10 µarcsec (for sources at 15th magnitude) and on-board software will allow
variable and bursting sources to be catalogued. In short, GAIA will produce a vast
galactic census. Ostensibly this makes GAIA a galactic mission rather than an
extragalactic one, but GAIA will in fact make enormous contributions to extra-
galactic astronomy in a range of environments.
Within the Local Group of galaxies, GAIA will analyse millions of stars within

the Large and Small Magellanic Clouds, allowing the internal dynamics and inter-
actions of these galaxies to be studied by stellar kinematics, as well as accurate
calibration of the stellar luminosities in these galaxies. This is important in order
to compare the information we have about such properties in a large disc galaxy
(the Milky Way) to small or medium-sized irregular galaxies. Beyond the SMC and
LMC there are eight known dwarf satellite galaxies of the Milky Way. These allow
themass distribution of the galactic halo to be traced, as well as having interesting
internal dynamics in their own right. Further afield, stars in M33 and M31 should
be amenable to proper motion studies, so that rotation curves of these galax-
ies can be constructed in a manner independent of line-of-sight velocity data. In
effect, GAIA will see the Andromeda Nebula rotate on the sky. As far as the Local
Group as a whole is concerned, accurate positions and transverse velocities of all
its members will allow detailed studies of the mass distribution and possibly its
formation history.
GAIA will also have lessons to teach us about the distribution of galaxies on

scales larger than the Local Group. One of the principal science goals relates to
the distribution of structures in the local Universe. Very-large-scale structures
in the galaxy distribution are already being mapped in great detail by redshift
surveys such as the Sloan Digital Sky Survey (SDSS) and the Anglo-Australian 2dF
Galaxy Redshift Survey, but GAIA will complement these studies by producing an
all-sky magnitude-limited survey including multicolour photometry of around a
million galaxies.
Because GAIA will be able to detect any object with an I band magnitude less

than about 20, it should be possible to detect supernovae with distance moduli up
to about 39 in magnitude. This corresponds to a distance of around 500 Mpc or
redshift z ∼ 0.1. It is therefore anticipated that around 100000 supernovae will be
detected in 4 years of GAIA operation. A particular benefit will be the discovery of
supernovae in galaxies of very low surface brightness, which are typically excluded
from present surveys.
The limiting V magnitude of 20 will yield a census of around 5 million quasars.

Since multicolour information will be available it ought to be possible to identify
quasars efficiently by colour selection, and since the objects would be expected to
have redshifts in the range z ∼ 0.2–0.3 it is expected that redshifts to an accuracy
of about 0.01 will be obtained. To get the whole idea in perspective, GAIA will
provide a quasar catalogue about 50 times larger than that resulting from SDSS.
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The quasar catalogue is interesting in itself, but it should also allow a direct link
between GAIA’s astrometric references and an inertial frame so that Mach’s ‘fixed
stars’ will be superseded by GAIA’s ‘fixed quasars’.

21.5 The Next Generation Space Telescope: NGST

The obvious success of the Hubble Space Telescope obviously lends strong sup-
port to the idea of future space telescopes operating around the optical part of the
spectrum. The NGST was originally conceived to be an optical/near-IR telescope
with a mirror of diameter around 8 m placed in space with a mission lifetime
of around 10 years. The idea of an 8 m class telescope in space is undoubtedly
appealing. After all, it is not that long since 8 m ground-based telescopes came
on the scene.
The addition of better IR capability also results in great advances over HST. How-

ever, there are obviously difficulties in getting a mirror as large as 8 m into space,
certainly if it is constructed in a manner anything like the mirrors at ground-
based facilities. It is generally believed that NGST will have a deployable mirror
of some kind, although the final design is not finalised. Moreover, it seems likely
that the NGSTmay be ‘de-scoped’ to involve a mirror of smaller diameter, perhaps
6 m or thereabouts. Since the chief improvement over the HST is collecting area,
these cost-cutting moves do eat into some aspects of the science case for NGST
as opposed to, say, the ultra-large ground-based optical telescopes discussed in
the next section.
The instrumentation to be carried by the NGST is also uncertain, but it seems

likely that it will involve at least a near-IR/visible camera capable of operating
from about 0.6 to 5 µm, a multi-object spectrograph functioning in the range
1–5 µm, and possibly a camera/slit spectrograph working at longer wavelengths
than 5 µm. The prospect of adding integral field units to the NGST’s battery are
truly awesome, but whether this will be practically possible remains to be seen.
Some of the principal areas of extragalactic astronomy in which the NGST would

be expected to be particularly important are

• weak lensing studies;

• studies of the IGM at high z;

• high-z supernovae searches;

• studies of gamma-ray-burst hosts;

• microlensing in the Virgo cluster;

• very deep imaging and spectroscopic surveys;

• cluster-galaxy evolution;

• the galaxy–AGN connection; and

• obscured star formation at high-z.
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Just to take the first of these as an example, the principal benefit of the NGST
to weak lensing is the ability to study lensing distortions as a function of redshift
to extremely faint flux limits (owing to the large collecting area). It is likely that
ground-based survey telescopes (such as VISTA) will have much larger fields than
the NGST but will clearly lack the ability to go as deep. Such studies will show how
the dark-matter distribution evolves with redshift in a robust fashion that should
complement CMB experiments.

21.6 Extremely Large Telescopes

Although the development of the NGST seems to be the obvious step forward in
optical extragalactic astronomy, one should not forget the enormous strides that
have been taken in traditional optics. As far as ground-based optical telescopes
are concerned, the diameter of the ‘next’ telescope has doubled roughly every
30 years over four centuries since Galileo. The last three notable ‘big things’ (Mt
Wilson, Mt Palomar and the Keck Observatories) fit this rule very well. We now
live in the era of 10 m diameter facilities.
The immediate advantage of moving into space, exploited successfully by the

HST and anticipated by the NGST, is that one can avoid the blurring effect of the
Earth’s atmosphere and reach the diffraction limit of a relatively large aperture.
On Earth, large telescopes are limited by atmospheric ‘seeing’ effects long before
they reach the famous 1.22λ/D. However, the construction of 10 m class tele-
scopes has been accompanied by impressive developments in adaptive optics (AO)
that may allow diffraction-limited performance to be reached even for monstrous
mirrors of order 100 m in diameter. It may therefore be that the next generation
of incredibly large telescopes will vie with the NGST for scientific predominance.
At the very least, 100 m class ground-based telescopes will be complementary to
the NGST.
We can illustrate this sort of development with the European Southern Obser-

vatory’s proposed Overwhelmingly Large Telescope (OWL) (other suggestions are
on the table). OWL has a diameter of 100 m, which is about ten times the total
collecting area of all telescopes ever built (assuming it has no competitors). This
immense collecting area is its real asset comparedwith the NGST. It should achieve
limiting visual magnitudes of 38 and have angular resolution measurable in mil-
liarcseconds in the V band. Such a performance will only be realised with full AO
involving around 500000 active elements moved by actuators to counteract the
irritation of seeing. The scale of OWL limits the field of view to about 3 arcmin2,
otherwise the detectors needed would be enormous; each arcsecond pixel occu-
pies about 3 mm in the focal plane.
A 100 m telescope with seeing-limited performance would be little more than

an enormous light bucket, useful perhaps for spectroscopy but not for imaging. In
any event, even spectroscopy requires one to avoid source confusion. On the other
hand, developments in optical interferometry may allow comparable resolution
with OWL but without the sensitivity arising from the huge collecting area. It
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would appear, therefore, that overwhelmingly large filled-aperture telescopes are
definitely on the horizon, and for good reasons.
It is clear that the construction of OWL requires the solution of numerous engi-

neering problems, such as the flexure properties of the structure required to house
it, the figuring of the mirrors, and the design and implementation of the AO sys-
tem. It has been claimed that OWL would represent a technological milestone
comparable with the invention of the telescope itself, in that it will have to break
the scaling law that has since 1600 related cost C to aperture diameter D, in the
form of a relation C ∝ D2.6. This does, however, appear at this stage to be feasi-
ble but with a price tag of at least $1 billion and a timescale of at least 15 years.
Assuming it can be done, what is the payoff from OWL for extragalactic astron-
omy?
For a start, the exquisite imaging potential of OWL in the optical spectrumwould

enable an unparalleled opportunity to study star formation directly at enormous
distances. Individual HII regions could be resolved in galaxies at redshifts z ∼ 2–3
(i.e. in galaxies seen in the Hubble Deep Field). Today high-redshift stellar pop-
ulations are probed by measuring integrated quantities produced by unresolved
objects (such as emission line fluxes). With OWL these unresolved components
could be resolved into their stellar constituents. High-redshift supernovae (z ∼ 10)
also fall within the range of OWL. Studies of star-formation rates as a function of
redshift using supernovae of various types are therefore feasible.
There is also an obvious synergy with the NGST, for the reasons I alluded to

above. While the NGST can perform all-sky surveys to find interesting objects,
telescopes like OWL could perform detailed spectroscopy, much as the Keck tele-
scopes are used today to follow up HST observations.
Yet it is probably with regard to the extragalactic distance scale that OWL will be

most revolutionary. For example, Cepheid variables with distance modulus m −
M � 43 (corresponding to a redshift z ∼ 0.8) could be measured and calibrated.
This allows not only the measurement of H but also its dependence on redshift
without the need to use Virgo as a stepping stone. This, of course, assumes that
the fields involved are not too crowded.
OWL will also be able to resolve individual solar-type stars in Virgo galaxies,

study white dwarfs in M31 and possibly also detect brown dwarfs in external
galaxies. There are also a host of galactic topics to which it could be applied,
including extra-solar planet searches, but these are beyond the scope of my brief
for this review.

21.7 Far-IR and Submillimetre Views of the
Early Universe

Such is the attention lavished in cosmological circles upon the Planck Surveyor,
to be launched in 2007, that one might forget that another important mission is
to be launched at the same time. The Far-Infrared Space Telescope (FIRST), soon
to be renamed Herschel, will share the launch but will part company with Planck
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in order to carry out its own independent scientific programme. Equipped with
a 3.5 m diameter passively cooled mirror and operating in the wavelength range
between 60 and 670 µm, it pushes sensitivity in the far-IR region to levels com-
parable with that reached by ground-based facilities like the VLT in the optical. It
will be able to study continuum emission from extragalactic dust sources, as well
as molecular and atomic line emission.
The most exciting developments at long wavelengths over the next 20 years,

however, will come from the Atacama Large Millimetre Array (ALMA), which will
operate in the millimetre to submillimetre region of the spectrum. ALMA will
take some time to assemble, but is hoped to begin operations in a partial sense
within a decade. Although existing submillimetre facilities, especially SCUBA, have
demonstrated the interest likely to be found at these wavelengths, but even the
possible upgrades of this facility will be strongly limited by the poor angular
resolution that makes source identification well nigh impossible.
ALMA is an interferometer, and it beats the resolution problem plaguing single-

dish observations at such long wavelengths by combining 64 antennae in a variety
of configurations with baselines from 150 m to 10 km. Operating at wavelengths
from 10 mm to around 350 µm (providing substantial overlap with FIRST), its sen-
sitivity will be about 10 times greater than FIRST’s optimal performance or indeed
the peak sensitivity of large optical telescopes like the VLT. Added to this sensi-
tivity is the exquisite angular resolution of 10 milliarcsec, which is about 10 times
better than the HST or the nearest directly comparable radio telescope, the Very
Large Array (VLA). The spectral performance is likewise impressive. A velocity res-
olution of about 0.05 km s−1 is anticipated, allowing detailed kinematic studies.
Not only will ALMA be able to use its sensitivity at long wavelengths to beat

dust extinction, but it will also be able to probe molecular emission at very high
redshift. Among the major science goals for ALMA in the extragalactic arena are

• kinematics of obscured nuclei and starbursts;

• detailed mapping of C, N, O and S in galactic discs;

• detection of H2O and O2 in galaxies;

• imaging thermal dust at z ∼ 10;

• kpc-scale resolution of dust in AGN and QSOs;

• Sunyaev–Zel’dovich measurements (complementary to Chandra); and

• studies of radio galaxies.

It is likely that ALMA, perhaps in tandemwith X-ray studies, will finally resolve the
question of what kinds of sources make up the extragalactic X-ray background.
In the longer term, perhaps one can imagine ALMA forming the core of a

millimetre-wave VLBI network, in a similar vein to radio VLBI.
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21.8 The Cosmic Microwave Background

We devoted all of Chapter 17 to the cosmic microwave background so we shall
comment only briefly upon it here. The much-vaunted satellite missions MAP
(NASA) and Planck Surveyor (ESA) are the next developments in this field; MAP
is in fact already in space. One of the problems with space missions is that the
design tends to be ‘frozen-in’ many years before launch. One of the consequences
of this for CMB studies is that, while waiting for the satellites to be developed
and launched, detector technology (particularly bolometers) has surged ahead.
Balloon-borne experiments using this new technology have consequently beaten
the satellites to the detection of acoustic peaks in the CMB temperature pattern.
This is not to say that MAP and Planck are now redundant. Not only will they
provide important independent tests of the balloons experiments, they will also
allow more detailed studies of foregrounds, Sunyaev–Zel’dovich measurements
and, in the case of Planck at least, measurements of the polarisation pattern. In
this field the medium-term future is likely to be dominated by these aspects of
the CMB sky.

21.9 The Square Kilometre Array

Our gradual move to longer wavelengths has now brought us firmly into the radio
region of the spectrum, and to perhaps the most impressive development of all,
the Square Kilometre Array (SKA). This facility will operate at frequencies from
about 0.15 to 20 GHz, and have at least 100 interferometer beams. It will probably
involve about 30 individual radio telescopes of effective diameter about 200 m,
adding up to approximately 106 m2 of collecting area. These will be spread over
a synthetic aperture about 1000 km in diameter. The central region of the array
is close-packed to achieve high sensitivity, while an extended set of outriggers
provides higher resolution through aperture synthesis. The resulting performance
parameters are astonishing:

• angular resolution less than 0.1 arcsec at 1.4 GHz (comparable with the Hub-
ble Space Telescope);

• a spectral coverage of more than 50% (ν/∆ν < 2);

• a spectral resolution good enough for detailed kinematics (ν/δν > 104);

• a huge field of view (∼ 1 square degree, i.e. larger than the full Moon); and

• a sensitivity more than 100 times better than anything currently available.

In some respects the SKAwill be an enormous integral field device, achieving imag-
ing and spectroscopy simultaneously both at great sensitivity. For these reasons
alone the SKA could fairly objectively be called the world’s premier astronomical
imaging instrument.
Many technological, financial and political hurdles will have to be overcome

before the SKA is built, but the payoff for science is enormous. Among the extra-
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galactic science tasks it could undertake are

• probing the ionisation history of the Universe using 21 cm radiation;

• large-scale structure via redshift surveys in neutral hydrogen;

• extragalactic star-formation studies;

• redshifted molecular lines, e.g. CO at z > 4;

• galaxy rotation curves and Tully–Fisher studies using 21 cm radiation;

• mapping the Lyman-α forest in 21 cm radiation; and

• lensing surveys and dark-matter probes.

Let us expand on some of these items.
The key physics behind many of these tasks relates to 21 cm (HI) radiation pro-

duced by hyperfine transitions in hydrogen which, even highly redshifted, can
be detected by SKA. Heating of the intergalactic medium (IGM) resulting from the
first generation of stars will result in a coupling of the spin temperature of the IGM
to the kinetic temperature of the gas, so that it differs from the temperature of
the cosmic microwave background. This situation produces a characteristic pat-
tern of 21 cm emission and absorption superimposed on the Cosmic Microwave
Background which can be used to map the effects of the ‘first light’ to form in
the Universe. Although high-redshift objects such as quasars have already been
detected, and IR measurements may allow some very-high-redshift sources to be
detected, it is always going to be difficult to beat the effect on surface brightness
due to cosmological expansion with such observations. Studying the distribution
of cosmic HI will avoid this difficulty. Among the key questions to be answered
by such studies will be the following.

• When did the first stars form?

• What are the first energy sources?

• How large were the primordial density perturbations?

• How did collapsing objects evolve?

In this era of large galaxy redshift surveys it is also worth expanding upon the
capabilities that SKA has in that direction too. One of the principal uncertainties in
understanding how galaxies and large-scale structure form and evolve is relating
the distribution of optical light (through which galaxy surveys are constructed)
to that of gravitating mass (which is by and large what theory can predict). Ongo-
ing surveys include on the order of a million galaxy redshifts. In 12 months of
observing time, one could expect to detect around 107 galaxies in HI in a volume
of order 108 Mpc3, which is about a factor of ten increase in both volume and
number. Being detected in neutral gas, such a survey would also furnish infor-
mation about the clustering of matter which complements that provided by opti-
cal emission from stellar populations. Accompanied by detailed HI kinematics of
the galaxies (e.g. Tully–Fisher studies), the possibilities for constraining galaxy-
formation theory are revolutionary.
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As a final comment on SKA science, it is worth mentioning the enormous advan-
tage it has for gravitational lensing studies. Not only does it have a much larger
field than comparable optical/IR facilities but it also has a very well-defined point-
spread function which will enable higher signal-to-noise measurement of individ-
ual galaxy ellipticities.

21.10 Gravitational Waves

We have touched briefly on gravitational waves a few times during the course of
this book, largely in connection with their possible production during inflation
and role in the production of anisotropies in the cosmic microwave background.
Most physicists think that gravitational radiationmust exist, although they are yet
to be detected directly. One of the important results to emerge fromMaxwell’s the-
ory of electromagnetism was that it was possible to obtain solutions to Maxwell’s
equations that describe the propagation of an electromagnetic wave through a
vacuum. Analogous solutions can be obtained in Einstein’s theory, and these rep-
resent what are known as gravitational waves or, sometimes, gravitational radia-
tion. The properties of, and searches for, gravitational radiation constitute a rich
field all of their own so we cannot give a complete picture here (see, for example,
Thorne 1987). What we will do is give a quick summary of their properties and
focus on some of the possibilities for gravitational wave cosmology, if and when
such radiation is directly detected.
Gravitational waves represent distortions in the metric of space–time in much

the same way that fluctuations in the density of matter induce distortions of
the metric in perturbation theory. The metric fluctuations induced by density
fluctuations are usually called scalar perturbations, whereas those corresponding
to gravitational waves are generally described as tensor perturbations. The rea-
son for this different nomenclature is that gravitational waves do not result in a
local expansion or contraction of the space–time. Scalar perturbations can do this
because they are longitudinal waves: the compression and rarefaction in different
parts of the wave correspond to slight changes in the metric such that some bits
of space–time become bigger and some smaller. Gravitational waves instead rep-
resent a distortion of the geometry that does not change the volume. In technical
terms, they are transverse-traceless density fluctuations. (Vector perturbations
correspond to vortical motions which are transverse, but not trace free.) Grav-
itational waves are similar to the shear waves one finds in elastic media: they
involve a twisting distortion of space–time rather than the compression seen in
longitudinal scalar waves.
Gravitational waves are produced by accelerating masses and in situations of

rapidly changing tidal fields. The more violent the accelerations involved the
higher the amplitude of the gravitational waves. Because Einstein’s theory of gen-
eral relativity is nonlinear, however, the waves become very complicated when
the amplitude gets large: the wave begins to feel the gravitational effect pro-
duced by its own energy. These waves travel at the speed of light, just as electro-
magnetic radiation does. The problem with detecting gravitational waves, how-
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ever, is that gravity is very weak. Even extremely violent events like a supernova
explosion produce only a very slight signal. Gravitational-wave detectors have
been built that attempt to look, for example, for changes in the length of large
metal blocks when a wave passes through. The expected signal is much smaller
than thermal fluctuations or background noise, however, so such experiments
are extremely difficult. In fact, the typical fractional change in length associated
with gravitational waves is less than 10−21. Despite claims by Weber in the 1960s
that he had detected signals that could be identified with gravitational radia-
tion, no such waves have yet been unambiguously observed. The next genera-
tion of gravitational wave detectors such as GEO (a UK–German collaboration),
Virgo (France/Italy) and LIGO (USA) should reach the desired sensitivity using
interferometry rather than solid metal bars. The LIGO experiment, for example,
involves an interferometer with arms 4 km in length. Moreover, plans exist to
launch satellites into space that should increase the baseline to millions of km
and thus increase the sensitivity to a given fractional change in length. One such
proposal called LISA is pencilled in for launch by the European Space Agency
sometime before 2020.
Although these experiments have not yet detected gravitational radiation, there

is very strong circumstantial evidence for its existence. The period of the binary
pulsar 1913 + 16 is gradually decreasing at a rate which matches to great pre-
cision relativistic calculations of the expected motion of a pair of neutron stars.
In these calculations the dominant form of energy loss from the system is via
gravitational radiation, so the observation of the ‘spin-up’ in this system is tan-
tamount to an observation of the gravitational waves themselves (Taylor et al .
1979). Hulse and Taylor were awarded the Nobel Prize for studies of this system
in 1993.
As we mentioned above, it is also possible that gravitational waves have

already been seen directly. The temperature fluctuations seen in the cosmic
microwave background radiation are usually attributed to the Sachs–Wolfe effect
produced by scalar density perturbations; see primordial density fluctuations.
But if these fluctuations were generated in the inflationary Universe phase by
quantum fluctuations in a scalar field, they are expected to be accompanied by
gravitational waves which in some cases could contribute an observable Sachs–
Wolfe effect of their own. It could well be that at least part of the famous
ripples seen by the Cosmic Background Explorer (COBE) satellite is caused by
gravitational waves with wavelengths of the same order as the cosmological
horizon.
It can be speculated that in a theory of quantum gravity the quantum states

of the gravitational field would be identified with gravitational waves in much
the same way that the quantum states of the electromagnetic field are identi-
fied with photons. The hypothetical quanta of gravitation are thus called gravi-
tons. It has been argued that gravitational wave astronomy could push back
the frontiers of the observable universe from the epoch of recombination to
the Planck epoch, since gravitons are expected to decouple at the latter energy
scale.
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21.11 Sociology, Politics and Economics

We hope it is apparent that there are many exciting developments on the
horizon, and that cosmology can look forward to a vigorous and challenging
future. But as well as the forthcoming developments in technology, the years
to come will probably also lead to changes on the human side of the subject.
Science, after all, is a very human kind of activity and we could not resist the
temptation to speculate a little about the likely impact on how astronomy is
performed.
The new technology that has driven observational astronomy at the breakneck

pace it has enjoyed over the last decades has also led to changes in the way the
accompanying human resources are organised. Collaborations are now very much
larger than they were even 20 years ago, leading to difficulties in bringing younger
scientists through to prominence and assigning credit to individual contributions.
This trend is likely to continue, with monolithic survey projects involving dozens
if not hundreds of scientists becoming the rule rather than the exception for
leading-edge research in astronomy. This is also becoming the case in theory,
especially in respect of the large collaborations involved in supercomputer simu-
lations of structure formation.
The organisation and control of access to astronomical facilities may also

change dramatically, as more dedicated high-cost facilities take the place of mul-
tipurpose facilities whose time is allocated by peer-review processes of various
kinds. Withmore andmore observational programs being constructed in response
to specific science goals, often strongly informed by theoretical ideas within a
specific framework, the role of serendipitous discovery seems set to diminish.
Altogether these factors conspire against the creative maverick and in favour of
the conformist team player. Whether one thinks this is a good thing or a bad thing
depends on one’s own personality.
There is also a more subtle change of emphasis, which can be seen even in

the structure of this chapter. More for presentational purposes than anything
else, we organised the discussion by wavelength region. This is an increasingly
outdated way of thinking. Future science programmes are likely to be much more
organised by science goal than by wavelength region. Traditional communities,
such as radio astronomy and X-ray astronomy, will see their boundaries blurred
by the growing number of scientists driven by an interest in particular objects
rather than particular kinds of photon.
So much for sociology, how about politics and economics? The main point that

comes tomind relates to the cost of these facilities. By any criteria, all themissions
and facilities we have discussed are extremely expensive. For this reason, as much
as any intrinsic transnationalism between scientists, upcoming developments are
likely to be multinational in character. ALMA is a true world astronomy project,
involving substantial financial investments from many countries including the
ESO member countries and the USA. The SKA has an even broader distribution of
likely contributors. These coalitions are brought together by the impossible strain
on budgets of individual countries that would be caused if they took on projects
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of such a scale on their own. But even if global collaborations are possible, there
must be some limit to the amount of cash that can be assembled for scientific
studies, especially in times of global recession. When will we reach that limit, and
what will be able to learn before we do?

21.12 Conclusions

This has been a very superficial and biased review, but we hope it has given some
insights into the way extragalactic astronomy might head over the next decade or
two. We have refrained from attempting to give accurate dates, because these are
so likely to be revised as to make such guesses worthless.
It is astonishing how much things have changed over the last decade and a half.

In 1985 the largest redshift survey available comprised a thousand galaxies or
so and fluctuations in the cosmic microwave background were not yet detected.
In some sense, that was a very good time to be a theorist but it was clear then
that, compared with other sciences, cosmology was extremely immature. Now,
with a steadily growing empirical foundation and an exciting interplay between
theory and observation, it is has come of age as a science. Its future development
promises much and, rightly, it is observation that will drive it forward.





Appendix A

Physical
Constants

Gravitational constant G 6.7× 10−11 N m2 kg−2

Speed of light c 3.00× 108 m s−1

Planck constant h 6.63× 10−34 J s
Boltzmann constant kB 1.38× 10−23 J K−1

Gas constant R 8.32× 103 J mol−1 K−1

Radiation density constant σr 7.56× 10−16 J m−3 K−4

Stefan–Boltzmann constant σ = 1
4σrc 5.6× 10−8 J m−2 K−4

Electron charge e 1.6× 10−19 C
Electron mass me 9.11× 10−31 kg
Mass of hydrogen atom mH 1.66× 10−27 kg
Mass of proton mp 1.6726× 10−27 kg
Mass of neutron mn 1.67492× 10−27 kg
Electronvolt eV 1.60× 10−19 J
Thomson scattering cross-section σT 6.65× 10−29 m2

Weak coupling constant gwk 1.4× 1036 J m3

The usual symbol for the radiation density constant is a, but this would clash too
frequently with our use of a for the cosmic scale factor in this book, so we have
chosen to call it σr.
The fine-structure constant is

α = e2

4πε0�c
� 1
137

in SI units.
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The cross-section for weak interactions in thermal equilibrium at temperature
T is given by

σwk = g2wk
[
kBT
(�c)2

]2
m2,

where gwk is the weak coupling constant. These are mediated by the W± and Z0

bosons which have masses 80.6 GeV and 91.18 GeV, respectively.



Appendix B

Useful
Astronomical
Quantities

Properties of the Sun

Solar mass M� 1.99× 1030 kg
Solar radius R� 6.98× 108 m
Luminosity L� 3.9× 1026 W

Other astronomical quantities

Parsec (pc) 3.09× 1016 m
Kiloparsec (kpc) 3.09× 1019 m
Megaparsec (Mpc) 3.09× 1022 m
Day 8.64× 104 s
Year 3.16× 107 s
Light year 9.46× 1015 m





Appendix C

Particle
Properties

The standard model of particle physics has three families of quarks organised in
doublets (u,d), (s,c) and (b,t). These have the following properties:

Quark Charge (in units of e) Mass (in GeV)

d −1
3 0.310

u +2
3 0.310

s −1
3 0.483

c +2
3 1.5

b −1
3 4.7

t +2
3 177

Quarks are confined in hadrons, which are either mesons (qq̄ pairs) or baryons
(q1q2q3 triplets). Familiar examples of the baryons are the proton (uud) and the
neutron (ddu) both with masses around 940 MeV. The π mesons are likewise
formed from d, d̄, u and ū. Hence π− = dū, π+ = ud̄ and π0 = (uū− dd̄)/

√
2.

The pions have masses around 136 MeV. Since the quarks carry a colour charge
(either red, green or blue) these can be constructed to be either colour–anticolour
combinations (mesons) or mixtures of three colours (baryons). Either way the
resulting states are colourless.
There are also three families of leptons, organised in doublets (e, νe), (µ, νµ)

and (τ, µτ). These have the following properties:



468 Appendix C

Lepton Charge (in units of e) Mass (in GeV)

e −1 0.0005
νe 0 ?
µ −1 0.106
νµ 0 ?
τ −1 1.784
ντ 0 ?
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angular power spectrum, 368–371
angular-diameter distance, 19, 414
angular-diameter–redshift test, 95
Anthropic Cosmological Principle, 164
APM galaxies, 406
apparent magnitude, 20, 68
astration, 182
Atacama Large Millimetre Array (ALMA),

455
atmospheric neutrinos, 176
autocovariance function, 369, 371, 379
automatic plate measuring (APM), 74, 363

autosolution, 223
axions, 91, 252, 325

Balmer series, 112
baryon asymmetry, 115, 116, 140, 142,

143, 160, 170
baryon number, 169
baryons, 110, 115, 134, 139, 140, 167, 171,

251, 467
baryosynthesis, 116, 140, 142
Baunt–Morgan effect, 82
BBGKY hierarchy, 348, 403
beam-switching, 370
Bianchi models, 52–55
bias, 338, 367
biased galaxy formation, 93, 280, 314–318,

352
Big Bang, 51, 101, 122, 138, 212
Big Bang singularity, 35, 36, 119–122, 148
Big Crunch, 36, 47
binary pulsar, 459
Birkhoff’s theorem, 24, 26, 223
bispectrum, 356, 358, 359
BL Lac objects, 71
black holes, 91, 125, 277
black-body, 125

radiation, 193
spectrum, 102, 197–199

Bloch walls, 141
blue supergiants, 80
bolometric luminosity, 68
Boltzmann equation, 252–253, 381
Boomerang, 104, 391
bosons, 131, 132, 134, 135, 168, 253
braneworld, 129
Brans–Dicke theory, 61–64, 163
bremsstrahlung, 434
brightest cluster galaxies, 80
brightness function, 245, 381
brown dwarfs, 91
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bubble nucleation, 158, 160
bulk flows, 398–400
bulk viscosity, 120, 121
bull’s-eye effect, 404
Burgers equation, 295

C-field, 58
Cabibbo mixing, 175
caustics, 290, 293, 294, 417
CDM model, 316, 406
Centaurus, 92
Center for Astrophysics (CfA), 363
central limit theorem, 279, 364
Cepheid variables, 454
CfA survey, 75
Chandra, 433, 449, 450, 455
chaotic inflation, 161–162, 164, 165
CHDM, 332
chemical potential, 131, 140, 168–171,

179, 186, 194, 199
Christoffel symbols, 6
Classical Cepheids, 80
classical cosmology, 94–100
closed universe, 40, 152
cloud-in-cloud problem, 302, 303
cluster expansion, 283
clusters of galaxies, 86, 89–92, 144, 248
CMBFAST, 381
COBE, 102, 103, 164, 198–200, 261, 318,

321, 328, 339, 367, 368, 371, 377–380,
386, 406, 435, 459

cold dark matter (CDM), 258, 260–261,
308, 316, 326, 328–330
universe, 262

colour, 134, 135
Coma cluster, 73, 89–91, 319
comoving coordinates, 9, 14
Compton, 124

length, 125
radius, 124, 132
scattering, 193, 196, 199, 200
time, 124, 125

conformal time, 13, 394
Constellation-X, 450
continuity, 393

equation, 207, 294
contravariant, 7
cooling, 310–312
Copernican Principle, 4, 164, 165
correlation dimension, 351
correlation functions, 339–342, 344–346

cosmic explosion, 285
cosmic horizon, 260
cosmic Mach number, 400
cosmic microwave background (CMB), 86,

100–104, 142, 164, 173–177, 213, 278
cosmic neutrino background, 173, 174
cosmic no-hair theorem, 159
cosmic scale factor, 9, 17
cosmic strings, 144, 252, 385

scenario, 285
cosmic turbulence, 213
cosmic variance, 338, 369
cosmic virial theorem, 316, 403, 406
cosmic web, 432
cosmological constant, 9, 26–28, 30, 38,

48–49, 64, 95, 119, 121, 122, 142, 143,
146, 147, 152, 159, 160, 164, 221
problem, 145–147

cosmological flatness problem, 152–155
cosmological horizon, 45–47, 122, 125,

141, 142, 148–150, 233, 248, 271, 274,
275
problem, 147–151

cosmological model, 109
cosmological neutrino background, 87
Cosmological Principle, 3–5, 9, 14, 15, 20,

25, 33, 51, 52, 56, 57, 67, 75, 93, 94, 119,
142, 143, 147, 148, 164, 165, 207, 338

COSMOS, 74
counts in cells, 352–354
covariance functions, 280, 281, 340
covariant, 7
covariant derivative, 8, 58
critical density, 13, 78, 83, 152, 176
cumulants, 282
Curie temperature, 136

damped Lyman-α systems, 430, 431, 443
dark matter, 86, 110, 142, 229, 251, 323,

383
de Sitter universe, 28, 159
Debye radius, 192
deceleration parameter, 17–18
decoupling, 112, 114, 117
deficiencies of SCDM, 334
degeneracy, 168

parameters, 170, 178
density of the Universe, 86–92
density parameter Ω0, 13, 30, 44, 83, 84,

86–87, 155, 185, 288
deuterium, 180, 182–184
deuterium bottleneck, 180
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de Sitter universe, 46
differential microwave radiometer (DMR),

377–379
differential visibility, 196
dipole anisotropy, 103, 371, 373
Dirac charge, 143
Dirac hypothesis, 61
DIRBE, 437
discs, 443
dispersion relation, 208, 242
dissipation, 236, 237, 239

mass, 235
of acoustic waves, 234–237
of adiabatic perturbations, 237–239
scale, 235

distance ladder, 79–83
distance modulus, 20
domain walls, 143–145, 159
Doppler effect, 17, 103, 240, 372
Doppler peak, 382–384
double quasar, 419
dust, 34, 37, 110
dust models, 34, 40–43
dynamical parallax, 79

effective width, 196
Einstein equations, 23
Einstein radius, 415, 418
Einstein tensor, 8
Einstein universe, 27, 28
Einstein–de Sitter, 221

universe, 36, 37, 39, 45, 214, 226, 233,
261, 287, 289, 395, 406, 419, 441

Ekpyrotic universe, 129
electric charge, 169
electromagnetic interactions, 133, 134, 169
electroweak interactions, 134, 139, 140
elliptical galaxies, 69, 70, 88, 320
energy–momentum tensor, 7, 12, 23, 27,

33, 53, 58, 61, 121, 146, 157, 158, 227
entropy per baryon, 111, 140
equation of state, 30, 46, 113
eternal inflation, 162
Euclidean space, 10, 11, 19
Euler equation, 120, 207, 294, 393, 394
Euler–Poincaré characteristic, 361, 364
event horizon, 47, 277
evolution, 100
expansion of the Universe, 142, 150
expansion parameter, see also cosmic scale

factor, 14

exponential inflation, 151
extended inflation, 63, 163

Faber–Jackson relation, 81
Far-Infrared Space Telescope (FIRST), 454,

455
fermions, 131, 132, 134, 168, 253
ferromagnetism, 136
Fick’s law, 235
filaments, 294, 296, 339, 366
fine-structure constant, 63, 463
FIRAS, 198, 377, 435
first-order phase transition, 137–139, 160
flatness, 143, 162
flatness problem, 45, 152, 155, 163
flavour, 135
flicker-noise spectrum, 275
fractal sets, 350
fractal structure, 351
fractal Universe, 55
fractionation, 182
free energy, 137–139
free streaming, 206, 212, 235, 247, 256
Friedmann equations, 13, 23–24, 26, 109,

116, 125, 129, 150, 152, 153, 158, 220,
223

Friedmann models, 33, 36, 46, 47, 52, 53,
55, 62, 67, 77, 83, 110, 122, 148, 149,
159, 213, 223, 337

GAIA, 450–452
galactic coordinates, 68
galactic evolution, 99
galaxies, 20, 69–70, 88–89, 92, 142, 144
galaxy clustering, 337, 338
galaxy clusters, 20, 91
galaxy formation, 438–444, 448
gauge-invariant, 227
Gauss–Bonnet theorem, 361–363
Gaussian curvature, 10, 12, 362–364
Gaussian density perturbations, 279–280
Gaussian filter, 269–271
Gaussian random field, 279, 328, 364, 395
general relativity, 124
general theory of relativity, 3, 6, 8, 12, 25,

26, 51, 55, 64, 109, 119, 127, 135, 142,
177, 228, 409

genus, 361, 362
GEO, 459
geodesic, 6
giant arcs, 417
globular clusters, 80, 84, 176
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gluons, 135, 141
grand desert, 141
Grand Unified Theories (GUTs), 135, 138,

160, 162, 169, 170
gravitational instability, see also Jeans

instability, 212, 213, 218, 219, 226, 229,
232, 241, 243, 248, 319, 323, 326–327,
330, 393, 405, 444

gravitational interaction, 135
gravitational lensing, 409, 448, 458
gravitational potential, 275, 276, 309, 393,

394, 412
gravitational waves, 164, 227, 278, 376,

379, 447, 458–459
gravitinos, 186, 325
gravitons, 459
Great Attractor, 92
growth factor, 219–221
Gunn–Peterson test, 428–430

hadron era, 114, 141, 167
hadrons, 134, 139, 167
Hamiltonian, 136, 137
Harrison–Zel’dovich spectrum, 156, 263,

274, 276, 278, 327
Hawking radiation, 125, 277
HDM scenario, 331
heat conduction, 235
Heisenberg uncertainty principle, 122
helicity, 131
helium, 177, 179–184, 186, 192
Herschel, 454
Hertzsprung–Russell (HR) diagram, 80, 84
hierarchical clustering, 296, 297, 324, 441
hierarchical cosmology, 55
hierarchical model, 346–350
Higgs boson, 135, 144
Higgs field, 138, 143–146
HII regions, 80
Hipparcos, 79, 450
Hopf–Cole substitution, 295
horizon, 5, 143

entry, 234, 276
mass, 233–234
problem, 155, 162, 163

hot Big Bang, 131–133
hot dark matter (HDM), 260–261, 309, 326,

328–330
universe, 262

Hoyle–Narlikar (conformal) gravity, 64
Hubble ‘tuning fork’, 69

Hubble constant, 14, 68, 75–79, 83, 109,
422–423

Hubble Deep Field, 441, 454
Hubble diagram, 78, 95
Hubble drag, 394
Hubble expansion, 22, 55, 92, 212
Hubble flow, 338
Hubble law, 13–15, 17, 47, 68, 75, 77, 338
Hubble parameter, 14, 17, 28, 35, 38
Hubble radius, 47
Hubble Space Telescope (HST), 82, 99, 452,

453
Hubble sphere, 46, 149
Hubble test, 21
Hubble time, 47, 83
Hyades, 80
Hydra, 92
Hydra-Centaurus, 103, 372

ideal gas, 34
IGM, 434, 438, 444
imperfect fluid, 120
induced symmetry-breaking, 137
inflation, 122, 150, 156, 160–163, 271,

276–278, 458
inflationary universe, 5, 29, 58, 59, 135,

156–160, 164, 251, 263, 327
Infrared Astronomical Satellite (IRAS), 75,

363, 373
infrared background, 434–437
intergalactic medium (IGM), 426, 428–434,

448, 457
intermediate vector bosons, 134
ionisation fraction, 194–196
irregular galaxy, 69
isocurvature fluctuations, 225, 231, 328,

375
isothermal perturbations, 140, 225,

230–231, 233, 235, 241, 249, 324
isotropy, 102

Jeans instability, 205, 209–212, 215, 224,
229, see also gravitational instability

Jeans length, 205, 209, 211, 219, 232, 329
Jeans mass, 231–233, 248, 256–259, 310

Kaluza–Klein theory, 129, 163
Kantowski–Sachs solution, 52
Kasner solution, 54
K-correction, 82, 99
Keck telescopes, 453, 454
Kelvin circulation theorem, 292, 319
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Killing vectors, 52, 53
Killing’s equation, 52
kiloparsec, 68
kinematic viscosity, 237

Lagrangian, 61, 121, 127, 133, 134, 157,
163

Landau damping, 212, 258
Large Magellanic Cloud (LMC), 73, 418, 451
large-scale structure, 51, 92, 205, 374, 444
Las Campanas Redshift Survey, 75, 76
last scattering surface, 196, 197, 375, 383
latent heat, 138
Lemaître model, 29
lens equation, 414
lenticular galaxies, 70
LEP/CERN, 110
lepton era, 114, 117, 171–172, 179
lepton number, 169
leptons, 114, 134, 139–141, 167, 169–171,

173, 180, 467
Lick catalogue, 74, 348
light cone, 18
light elements, 176
lightlike interval, 10
LIGO, 459
Limber equation, 342–344
Limber hypothesis, 342, 344
linear bias model, 317
Liouville equation, 210, 245
LMC, 418
Local Group, 70, 73, 92, 93, 372, 373, 451
Local Supercluster, 360
look-back time, 43
Loytsianski’s theorem, 228
luminosity distance, 18, 42, 77, 79, 95, 97
luminosity function, 88, 99, 373, 388
Lyman limit system, 431
Lyman series, 112, 198
Lyman-α forest, 431, 457
Lyman-α systems, 438

M-theories, 128
M31, 73
Mach’s Principle, 4, 64
Madau Plot, 441
magnetic monopoles, 139, 143–145, 163,

252
magnetisation, 136
magnification tensor, 416
magnitude–redshift relation, 448

main sequence stars, 80
Malmquist bias, 82, 402
MAP, 104, 385, 456
mass function, 301–304
matter era, 195–197
matter universe, 34
matter–radiation equivalence, 112, 113,

117, 222, 330
matter-dominated universe, 37, 110, 118,

154, 221, 291
Mattig formula, 42
MAXIM, 450
MAXIMA, 104, 391
Maxwell–Boltzmann distribution, 198
megaparsec, 68
mergers, 438
mesons, 134, 467
Meszaros effect, 225–226, 241, 261
meteorites, 85
metric tensor, 6, 7, 10, 23
microlensing, 418–419
Milky Way, 4, 68, 418, 450
Minkowski (flat-space) metric, 24
Minkowski functionals, 364
Minkowski space–time, 6
mix-master universe, 5, 55, 148
monopole problem, 143–145, 159
moving cluster method, 79
Mt Palomar observatory, 453
Mt Wilson observatory, 453
multiplicity function, 301

Navier–Stokes equation, 236
N-body simulations, 304–310
neutrino degeneracy, 186, 187
neutrino oscillations, 87, 176
neutrinos, 87, 91, 110, 114, 116, 134, 153,

167, 171–174, 177, 178, 181, 186, 191,
225, 230, 231, 253–255, 257, 260

neutron–proton ratio, 178–179
neutrons, 178
new inflation, 156, 161
Newton’s spherical theorem, 24
Next Generation Space Telescope (NGST),

452–454
no-boundary conjecture, 128
non-baryonic dark matter, 92, 185, 262,

325
non-Gaussian fluctuations, 284–285
normalisation, 328, 331, 337
novae, 80
nucleocosmochronology, 84–86
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nucleosynthesis, 87, 91, 92, 131, 142, 170,
171, 174, 176–188, 251

number-counts, 99, 437–438, 448
Nyquist frequency, 310

OCDM, 332
Olbers’ Paradox, 22–23
old inflation, 160–161, 163
open inflation, 162–163
open universes, 39
optical depth, 196
order parameter Φ, 136, 137, 157, 158
Ostriker–Vishniac effect, 389
Overwhelmingly Large Telescope (OWL),

453, 454

Palomar Sky Survey, 74
pancakes, 290–292, 366
parallax distance, 19
parsec, 67
particle horizon, 5, 46, 148, 233
particle–mesh techniques, 306–309
particles-in-boxes spectrum, 273
percolation, 339, 359–361, 365
Perfect Cosmological Principle, 4, 57
perfect fluid, 7, 33–36
perihelion advance of Mercury, 63
perturbation spectrum, 264–266
phase mixing, 212, 258
phase transitions, 136, 138, 141, 147, 157,

256
Phoenix Universe, 162
photinos, 91, 186, 325
photo-ionisation, 112
photon diffusion, 238, 239
pions, 134, 167, 467
Planck density, 123
Planck energy, 123
Planck era, 123–126
Planck length, 123, 129
Planck mass, 123, 124
Planck spectrum, 111
Planck Surveyor, 104, 147, 385, 456
Planck temperature, 123, 145, 151, 172
Planck time, 122–125, 142, 147, 152, 172,

271, 273
plasma era, 132, 192–194, 235, 237, 248
plasma frequency, 193
point sources, 387
Poisson’s equation, 8, 207, 294, 306, 393,

400, 402, 416

polarisation, 391, 456
polyspectra, 356–359
Population III, 187
post-recombination Universe, 425
POTENT, 400, 402
power spectrum, 265, 280, 285, 300–301,

327, 328, 339, 355–356, 365, 379, 383,
404

power-law inflation, 151
Press–Schechter theory, 302–304, 427
primary distance indicators, 80
primordial black holes, 251
Primordial Isocurvature Baryon (PIB)

model, 325
primordial spectrum, 263
proper distance, 13, 14, 18
proper time, 10
protons, 178
proximity effect, 432
PSCz, 363

QDOT, 75
QSO, see quasar
quadrupole, 103, 376, 378
quantum chromodynamics (QCD), 135
quantum cosmology, 126–128
quantum electrodynamics (QED), 133
quantum gravity, 120, 124, 127
quark–gluon plasma, 167
quark–hadron phase transition, 141, 147,

167–168
quarks, 134, 139–141, 467
quasars, 20, 29, 72, 183, 426–428, 430,

431, 433, 435, 443, 444
quasi-steady-state, 58

radiation drag, 240–241
radiation entropy per baryon, 170
radiation-dominated universe, 38, 227
radiative era, 179, 191–192
radiative fluid, 34
radiative models, 43–44
radiative universe, 35
radiative viscosity, 238
radio galaxies, 71
radio sources, 20
Rayleigh distribution, 279
Rayleigh–Jeans region, 198, 200
recombination, 112, 192, 194–195, 198,

215, 233, 237, 239, 246, 248, 260, 271,
287, 383

red supergiants, 80
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redshift, 16–17
redshift space, 338, 374
redshift-space distortions, 402–405
Rees–Sciama effect, 103
reheating, 138, 159
reionisation, 196
Ricci scalar, 8, 23, 127
Ricci tensor, 8, 23
Riemann–Christoffel tensor, 8
Robertson–Walker metric, 9–13, 17, 18, 23,

27, 57, 58, 62, 95, 120, 153, 158, 245,
331, 412

ROSAT, 90
rotation curve, 88
RR Lyrae, 80
Ryle Telescope, 390

S0 galaxies, 70, 88
Sachs–Wolfe effect, 103, 374–376, 379,

380, 382, 459
Saha equation, 192, 194, 195, 198
Sakharov oscillations, 382, 383
SAURON, 449
scalar curvature, 61
scalar field, 121, 156, 157, 160, 161, 164,

276
scalar mode, 227
scalar perturbations, 278
scale-invariant spectrum, 263, 274
Schechter function, 88, 303
Schwarzschild radius, 25, 124
Schwarzschild times, 124
Scott effect, 82
SCUBA, 455
second order, 138
second-order phase transition, 137, 161
secondary distance indicators, 80
secular parallax, 79
self-similar evolution, 296–301
self-similarity, 296
semi-analytic galaxy formation, 320
Seyfert galaxies, 71
Shapley concentration, 75, 375
shear, 54, 82, 94, 417, 421

tensor, 417
viscosity, 120

shell-crossing, 292, 295
Silk mass, 239, 262
singularity, 86, 119, 120
skewness, 352, 353
Sloan Digital Sky Survey (SDSS), 75, 451

slow-rolling approximation, 161
slow-rolling phase, 158, 159
Small Magellanic Cloud (SMC), 73, 451
smoothed-particle hydrodynamics (SPH),

313, 314
softening length, 305
solar luminosity, 68
solar mass, 68
solar neutrinos, 176
spacelike, 10
spatial correlation function, 340
special relativity, 6
spectral index, 265
spectral moments, 266
spectral parameters, 266
speed-of-light sphere, 46
spherical harmonics, 368, 376
spinodal decomposition, 137, 161
spiral galaxies, 70, 81, 320, 439
spirals, 69
spontaneous symmetry breaking, 137–139,

146, 157
Square Kilometre Array (SKA), 456–458
stable clustering, 299–300
standard cold dark matter (SCDM) model,

332, 391
standard inflation, 151
starburst galaxies, 72, 433
statistical parallax, 80
steady-state model, 5, 57–58, 162, 165, 187
stochastic inflation, 162
streaming motions, 398
string cosmology, 128–129
strings, 143, 144
strong, 139
Strong Anthropic Principle, 165
strong energy condition, 120
strong lensing, 420
strong nuclear interactions, 134, 169
sub-inflation, 151
sum-over-histories, 127
Sunyaev–Zel’dovich distortions, 432, 455,

456
Sunyaev–Zel’dovich effect, 82, 103, 200,

389–391, 426, 432
super-inflation, 151
superconductivity, 136
supercooling, 138
supergravity, 157
superheavy bosons, 141
SuperKamiokande, 175
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supernovae, 80, 85, 164, 459
superspace, 128
superstrings, 135, 157
supersymmetric particles, 186
supersymmetry, 135, 142, 147, 157, 162
synchronous gauge, 10, 245

TCDM, 333
Telstar, 101
tensor, 7

mode, 227
perturbations, 458

tertiary distance indicators, 80
textures, 143, 144
theory of everything, 136
thermal conduction, 213, 235, 237, 238
thermal conductivity, 120, 236
thermal diffusion, 236, 237
thermal equilibrium, 131, 133, 142, 158,

171, 172, 177, 178, 195, 197, 237, 252
Thomson scattering, 112, 381, 388, 389,

391
tidal forces, 296
timelike, 10
Tolman–Bondi solution, 56
top-hat filter, 268
topological defects, 144
topology, 339, 361–366
transfer function, 328–330, 337, 378
tree codes, 309
trigonometric parallax, 79
Tully–Fisher relationship, 81, 457
two-point correlation function, 283, 315
type Ia supernovae, 95–97

variance, 265, 272, 273, 352
vector bosons, 141
vector mode, 227

vector perturbations, 458
velocity correlations, 396–398
velocity–density reconstruction, 400–402
Very Large Array (VLA), 455
Very Large Baseline Interferometry (VLBI),

455
Very Large Telescope (VLT), 455
Virgo cluster, 89, 92, 93, 319
Virgo supercluster, 75
virial theorem, 88, 89, 289
viscosity, 120, 213, 235, 295
visibility, 196
Visible and Infrared Survey Telescope for

Astronomy (VISTA), 453
void probability function, 354
voids, 75
vortical perturbations, 230

wavefunction, 126, 127
Weak Anthropic Principle, 61, 165
weak lensing, 420
weak nuclear interactions, 134, 169, 256,

464
Weiss domains, 136, 158
Wheeler–de Witt equation, 128
white-noise spectrum, 272
Wien region, 198, 200
Wiener–Khintchine theorem, 281, 355
window function, 267, 269, 270, 399

X-ray background, 433–434
XEUS, 450
XMM/Newton, 449

Zel’dovich approximation, 290–295, 303
Zel’dovich pancakes, 309
Zwicky catalogue, 75, 348




